Metamath Proof Explorer


Theorem fmptsng

Description: Express a singleton function in maps-to notation. Version of fmptsn allowing the value B to depend on the variable x . (Contributed by AV, 27-Feb-2019)

Ref Expression
Hypothesis fmptsng.1 x=AB=C
Assertion fmptsng AVCWAC=xAB

Proof

Step Hyp Ref Expression
1 fmptsng.1 x=AB=C
2 velsn xAx=A
3 2 bicomi x=AxA
4 3 anbi1i x=Ay=BxAy=B
5 4 opabbii xy|x=Ay=B=xy|xAy=B
6 velsn pACp=AC
7 eqidd AVCWA=A
8 eqidd AVCWC=C
9 eqeq1 x=Ax=AA=A
10 9 adantr x=Ay=Cx=AA=A
11 eqeq1 y=Cy=BC=B
12 1 eqeq2d x=AC=BC=C
13 11 12 sylan9bbr x=Ay=Cy=BC=C
14 10 13 anbi12d x=Ay=Cx=Ay=BA=AC=C
15 14 opelopabga AVCWACxy|x=Ay=BA=AC=C
16 7 8 15 mpbir2and AVCWACxy|x=Ay=B
17 eleq1 p=ACpxy|x=Ay=BACxy|x=Ay=B
18 16 17 syl5ibrcom AVCWp=ACpxy|x=Ay=B
19 6 18 biimtrid AVCWpACpxy|x=Ay=B
20 elopab pxy|x=Ay=Bxyp=xyx=Ay=B
21 opeq12 x=Ay=Bxy=AB
22 21 eqeq2d x=Ay=Bp=xyp=AB
23 1 adantr x=Ay=BB=C
24 23 opeq2d x=Ay=BAB=AC
25 opex ACV
26 25 snid ACAC
27 24 26 eqeltrdi x=Ay=BABAC
28 eleq1 p=ABpACABAC
29 27 28 syl5ibrcom x=Ay=Bp=ABpAC
30 22 29 sylbid x=Ay=Bp=xypAC
31 30 impcom p=xyx=Ay=BpAC
32 31 exlimivv xyp=xyx=Ay=BpAC
33 32 a1i AVCWxyp=xyx=Ay=BpAC
34 20 33 biimtrid AVCWpxy|x=Ay=BpAC
35 19 34 impbid AVCWpACpxy|x=Ay=B
36 35 eqrdv AVCWAC=xy|x=Ay=B
37 df-mpt xAB=xy|xAy=B
38 37 a1i AVCWxAB=xy|xAy=B
39 5 36 38 3eqtr4a AVCWAC=xAB