Description: Express a singleton function in maps-to notation. Version of fmptsn allowing the value B to depend on the variable x . (Contributed by AV, 27-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fmptsng.1 | |
|
Assertion | fmptsng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptsng.1 | |
|
2 | velsn | |
|
3 | 2 | bicomi | |
4 | 3 | anbi1i | |
5 | 4 | opabbii | |
6 | velsn | |
|
7 | eqidd | |
|
8 | eqidd | |
|
9 | eqeq1 | |
|
10 | 9 | adantr | |
11 | eqeq1 | |
|
12 | 1 | eqeq2d | |
13 | 11 12 | sylan9bbr | |
14 | 10 13 | anbi12d | |
15 | 14 | opelopabga | |
16 | 7 8 15 | mpbir2and | |
17 | eleq1 | |
|
18 | 16 17 | syl5ibrcom | |
19 | 6 18 | biimtrid | |
20 | elopab | |
|
21 | opeq12 | |
|
22 | 21 | eqeq2d | |
23 | 1 | adantr | |
24 | 23 | opeq2d | |
25 | opex | |
|
26 | 25 | snid | |
27 | 24 26 | eqeltrdi | |
28 | eleq1 | |
|
29 | 27 28 | syl5ibrcom | |
30 | 22 29 | sylbid | |
31 | 30 | impcom | |
32 | 31 | exlimivv | |
33 | 32 | a1i | |
34 | 20 33 | biimtrid | |
35 | 19 34 | impbid | |
36 | 35 | eqrdv | |
37 | df-mpt | |
|
38 | 37 | a1i | |
39 | 5 36 38 | 3eqtr4a | |