Metamath Proof Explorer


Theorem fmtnoge3

Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion fmtnoge3 N 0 FermatNo N 3

Proof

Step Hyp Ref Expression
1 fmtno N 0 FermatNo N = 2 2 N + 1
2 3z 3
3 2 a1i N 0 3
4 2nn0 2 0
5 4 a1i N 0 2 0
6 id N 0 N 0
7 5 6 nn0expcld N 0 2 N 0
8 5 7 nn0expcld N 0 2 2 N 0
9 peano2nn0 2 2 N 0 2 2 N + 1 0
10 8 9 syl N 0 2 2 N + 1 0
11 10 nn0zd N 0 2 2 N + 1
12 3m1e2 3 1 = 2
13 2cn 2
14 exp1 2 2 1 = 2
15 13 14 ax-mp 2 1 = 2
16 2re 2
17 16 a1i N 0 2
18 1le2 1 2
19 18 a1i N 0 1 2
20 17 6 19 expge1d N 0 1 2 N
21 1zzd N 0 1
22 7 nn0zd N 0 2 N
23 1lt2 1 < 2
24 23 a1i N 0 1 < 2
25 17 21 22 24 leexp2d N 0 1 2 N 2 1 2 2 N
26 20 25 mpbid N 0 2 1 2 2 N
27 15 26 eqbrtrrid N 0 2 2 2 N
28 12 27 eqbrtrid N 0 3 1 2 2 N
29 3re 3
30 29 a1i N 0 3
31 1red N 0 1
32 8 nn0red N 0 2 2 N
33 30 31 32 lesubaddd N 0 3 1 2 2 N 3 2 2 N + 1
34 28 33 mpbid N 0 3 2 2 N + 1
35 eluz2 2 2 N + 1 3 3 2 2 N + 1 3 2 2 N + 1
36 3 11 34 35 syl3anbrc N 0 2 2 N + 1 3
37 1 36 eqeltrd N 0 FermatNo N 3