Metamath Proof Explorer


Theorem fncofn

Description: Composition of a function with domain and a function as a function with domain. Generalization of fnco . (Contributed by AV, 17-Sep-2024)

Ref Expression
Assertion fncofn FFnAFunGFGFnG-1A

Proof

Step Hyp Ref Expression
1 fnfun FFnAFunF
2 funco FunFFunGFunFG
3 1 2 sylan FFnAFunGFunFG
4 3 funfnd FFnAFunGFGFndomFG
5 fndm FFnAdomF=A
6 5 adantr FFnAFunGdomF=A
7 6 eqcomd FFnAFunGA=domF
8 7 imaeq2d FFnAFunGG-1A=G-1domF
9 dmco domFG=G-1domF
10 8 9 eqtr4di FFnAFunGG-1A=domFG
11 10 fneq2d FFnAFunGFGFnG-1AFGFndomFG
12 4 11 mpbird FFnAFunGFGFnG-1A