Metamath Proof Explorer


Theorem fndmin

Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion fndmin FFnAGFnAdomFG=xA|Fx=Gx

Proof

Step Hyp Ref Expression
1 dffn5 FFnAF=xAFx
2 1 biimpi FFnAF=xAFx
3 df-mpt xAFx=xy|xAy=Fx
4 2 3 eqtrdi FFnAF=xy|xAy=Fx
5 dffn5 GFnAG=xAGx
6 5 biimpi GFnAG=xAGx
7 df-mpt xAGx=xy|xAy=Gx
8 6 7 eqtrdi GFnAG=xy|xAy=Gx
9 4 8 ineqan12d FFnAGFnAFG=xy|xAy=Fxxy|xAy=Gx
10 inopab xy|xAy=Fxxy|xAy=Gx=xy|xAy=FxxAy=Gx
11 9 10 eqtrdi FFnAGFnAFG=xy|xAy=FxxAy=Gx
12 11 dmeqd FFnAGFnAdomFG=domxy|xAy=FxxAy=Gx
13 19.42v yxAy=Fxy=GxxAyy=Fxy=Gx
14 anandi xAy=Fxy=GxxAy=FxxAy=Gx
15 14 exbii yxAy=Fxy=GxyxAy=FxxAy=Gx
16 fvex FxV
17 eqeq1 y=Fxy=GxFx=Gx
18 16 17 ceqsexv yy=Fxy=GxFx=Gx
19 18 anbi2i xAyy=Fxy=GxxAFx=Gx
20 13 15 19 3bitr3i yxAy=FxxAy=GxxAFx=Gx
21 20 abbii x|yxAy=FxxAy=Gx=x|xAFx=Gx
22 dmopab domxy|xAy=FxxAy=Gx=x|yxAy=FxxAy=Gx
23 df-rab xA|Fx=Gx=x|xAFx=Gx
24 21 22 23 3eqtr4i domxy|xAy=FxxAy=Gx=xA|Fx=Gx
25 12 24 eqtrdi FFnAGFnAdomFG=xA|Fx=Gx