Metamath Proof Explorer


Theorem fndmin

Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion fndmin F Fn A G Fn A dom F G = x A | F x = G x

Proof

Step Hyp Ref Expression
1 dffn5 F Fn A F = x A F x
2 1 biimpi F Fn A F = x A F x
3 df-mpt x A F x = x y | x A y = F x
4 2 3 syl6eq F Fn A F = x y | x A y = F x
5 dffn5 G Fn A G = x A G x
6 5 biimpi G Fn A G = x A G x
7 df-mpt x A G x = x y | x A y = G x
8 6 7 syl6eq G Fn A G = x y | x A y = G x
9 4 8 ineqan12d F Fn A G Fn A F G = x y | x A y = F x x y | x A y = G x
10 inopab x y | x A y = F x x y | x A y = G x = x y | x A y = F x x A y = G x
11 9 10 syl6eq F Fn A G Fn A F G = x y | x A y = F x x A y = G x
12 11 dmeqd F Fn A G Fn A dom F G = dom x y | x A y = F x x A y = G x
13 19.42v y x A y = F x y = G x x A y y = F x y = G x
14 anandi x A y = F x y = G x x A y = F x x A y = G x
15 14 exbii y x A y = F x y = G x y x A y = F x x A y = G x
16 fvex F x V
17 eqeq1 y = F x y = G x F x = G x
18 16 17 ceqsexv y y = F x y = G x F x = G x
19 18 anbi2i x A y y = F x y = G x x A F x = G x
20 13 15 19 3bitr3i y x A y = F x x A y = G x x A F x = G x
21 20 abbii x | y x A y = F x x A y = G x = x | x A F x = G x
22 dmopab dom x y | x A y = F x x A y = G x = x | y x A y = F x x A y = G x
23 df-rab x A | F x = G x = x | x A F x = G x
24 21 22 23 3eqtr4i dom x y | x A y = F x x A y = G x = x A | F x = G x
25 12 24 syl6eq F Fn A G Fn A dom F G = x A | F x = G x