Metamath Proof Explorer


Theorem fnex

Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of TakeutiZaring p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg . See fnexALT for alternate proof. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fnex FFnAABFV

Proof

Step Hyp Ref Expression
1 fnrel FFnARelF
2 df-fn FFnAFunFdomF=A
3 eleq1a ABdomF=AdomFB
4 3 impcom domF=AABdomFB
5 resfunexg FunFdomFBFdomFV
6 4 5 sylan2 FunFdomF=AABFdomFV
7 6 anassrs FunFdomF=AABFdomFV
8 2 7 sylanb FFnAABFdomFV
9 resdm RelFFdomF=F
10 9 eleq1d RelFFdomFVFV
11 10 biimpa RelFFdomFVFV
12 1 8 11 syl2an2r FFnAABFV