Metamath Proof Explorer


Theorem fnov

Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fnov FFnA×BF=xA,yBxFy

Proof

Step Hyp Ref Expression
1 dffn5 FFnA×BF=zA×BFz
2 fveq2 z=xyFz=Fxy
3 df-ov xFy=Fxy
4 2 3 eqtr4di z=xyFz=xFy
5 4 mpompt zA×BFz=xA,yBxFy
6 5 eqeq2i F=zA×BFzF=xA,yBxFy
7 1 6 bitri FFnA×BF=xA,yBxFy