Metamath Proof Explorer


Theorem fnreseql

Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion fnreseql FFnAGFnAXAFX=GXXdomFG

Proof

Step Hyp Ref Expression
1 fnssres FFnAXAFXFnX
2 1 3adant2 FFnAGFnAXAFXFnX
3 fnssres GFnAXAGXFnX
4 3 3adant1 FFnAGFnAXAGXFnX
5 fneqeql FXFnXGXFnXFX=GXdomFXGX=X
6 2 4 5 syl2anc FFnAGFnAXAFX=GXdomFXGX=X
7 resindir FGX=FXGX
8 7 dmeqi domFGX=domFXGX
9 dmres domFGX=XdomFG
10 8 9 eqtr3i domFXGX=XdomFG
11 10 eqeq1i domFXGX=XXdomFG=X
12 df-ss XdomFGXdomFG=X
13 11 12 bitr4i domFXGX=XXdomFG
14 6 13 bitrdi FFnAGFnAXAFX=GXXdomFG