Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Revised to add reverse implication. (Revised by NM, 29-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fnsnb.1 | |
|
Assertion | fnsnb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnb.1 | |
|
2 | fnsnr | |
|
3 | df-fn | |
|
4 | 1 | snid | |
5 | eleq2 | |
|
6 | 4 5 | mpbiri | |
7 | 6 | anim2i | |
8 | 3 7 | sylbi | |
9 | funfvop | |
|
10 | 8 9 | syl | |
11 | eleq1 | |
|
12 | 10 11 | syl5ibrcom | |
13 | 2 12 | impbid | |
14 | velsn | |
|
15 | 13 14 | bitr4di | |
16 | 15 | eqrdv | |
17 | fvex | |
|
18 | 1 17 | fnsn | |
19 | fneq1 | |
|
20 | 18 19 | mpbiri | |
21 | 16 20 | impbii | |