Metamath Proof Explorer


Theorem fnsnb

Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Revised to add reverse implication. (Revised by NM, 29-Dec-2018)

Ref Expression
Hypothesis fnsnb.1 AV
Assertion fnsnb FFnAF=AFA

Proof

Step Hyp Ref Expression
1 fnsnb.1 AV
2 fnsnr FFnAxFx=AFA
3 df-fn FFnAFunFdomF=A
4 1 snid AA
5 eleq2 domF=AAdomFAA
6 4 5 mpbiri domF=AAdomF
7 6 anim2i FunFdomF=AFunFAdomF
8 3 7 sylbi FFnAFunFAdomF
9 funfvop FunFAdomFAFAF
10 8 9 syl FFnAAFAF
11 eleq1 x=AFAxFAFAF
12 10 11 syl5ibrcom FFnAx=AFAxF
13 2 12 impbid FFnAxFx=AFA
14 velsn xAFAx=AFA
15 13 14 bitr4di FFnAxFxAFA
16 15 eqrdv FFnAF=AFA
17 fvex FAV
18 1 17 fnsn AFAFnA
19 fneq1 F=AFAFFnAAFAFnA
20 18 19 mpbiri F=AFAFFnA
21 16 20 impbii FFnAF=AFA