Metamath Proof Explorer


Theorem fnsnfvOLD

Description: Obsolete version of fnsnfv as of 8-Aug-2024. (Contributed by NM, 22-May-1998) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion fnsnfvOLD FFnABAFB=FB

Proof

Step Hyp Ref Expression
1 eqcom y=FBFB=y
2 fnbrfvb FFnABAFB=yBFy
3 1 2 bitrid FFnABAy=FBBFy
4 3 abbidv FFnABAy|y=FB=y|BFy
5 df-sn FB=y|y=FB
6 5 a1i FFnABAFB=y|y=FB
7 fnrel FFnARelF
8 relimasn RelFFB=y|BFy
9 7 8 syl FFnAFB=y|BFy
10 9 adantr FFnABAFB=y|BFy
11 4 6 10 3eqtr4d FFnABAFB=FB