Metamath Proof Explorer


Theorem fnsnfvOLD

Description: Obsolete version of fnsnfv as of 8-Aug-2024. (Contributed by NM, 22-May-1998) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion fnsnfvOLD F Fn A B A F B = F B

Proof

Step Hyp Ref Expression
1 eqcom y = F B F B = y
2 fnbrfvb F Fn A B A F B = y B F y
3 1 2 bitrid F Fn A B A y = F B B F y
4 3 abbidv F Fn A B A y | y = F B = y | B F y
5 df-sn F B = y | y = F B
6 5 a1i F Fn A B A F B = y | y = F B
7 fnrel F Fn A Rel F
8 relimasn Rel F F B = y | B F y
9 7 8 syl F Fn A F B = y | B F y
10 9 adantr F Fn A B A F B = y | B F y
11 4 6 10 3eqtr4d F Fn A B A F B = F B