Metamath Proof Explorer


Theorem fnunop

Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by AV, 16-Aug-2024)

Ref Expression
Hypotheses fnunop.x φXV
fnunop.y φYW
fnunop.f φFFnD
fnunop.g G=FXY
fnunop.e E=DX
fnunop.d φ¬XD
Assertion fnunop φGFnE

Proof

Step Hyp Ref Expression
1 fnunop.x φXV
2 fnunop.y φYW
3 fnunop.f φFFnD
4 fnunop.g G=FXY
5 fnunop.e E=DX
6 fnunop.d φ¬XD
7 fnsng XVYWXYFnX
8 1 2 7 syl2anc φXYFnX
9 disjsn DX=¬XD
10 6 9 sylibr φDX=
11 3 8 10 fnund φFXYFnDX
12 4 fneq1i GFnEFXYFnE
13 5 fneq2i FXYFnEFXYFnDX
14 12 13 bitri GFnEFXYFnDX
15 11 14 sylibr φGFnE