Metamath Proof Explorer


Theorem fnwe2lem1

Description: Lemma for fnwe2 . Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses fnwe2.su z=FxS=U
fnwe2.t T=xy|FxRFyFx=FyxUy
fnwe2.s φxAUWeyA|Fy=Fx
Assertion fnwe2lem1 φaAFa/zSWeyA|Fy=Fa

Proof

Step Hyp Ref Expression
1 fnwe2.su z=FxS=U
2 fnwe2.t T=xy|FxRFyFx=FyxUy
3 fnwe2.s φxAUWeyA|Fy=Fx
4 3 ralrimiva φxAUWeyA|Fy=Fx
5 fveq2 a=xFa=Fx
6 5 csbeq1d a=xFa/zS=Fx/zS
7 fvex FxV
8 7 1 csbie Fx/zS=U
9 6 8 eqtrdi a=xFa/zS=U
10 5 eqeq2d a=xFy=FaFy=Fx
11 10 rabbidv a=xyA|Fy=Fa=yA|Fy=Fx
12 9 11 weeq12d a=xFa/zSWeyA|Fy=FaUWeyA|Fy=Fx
13 12 cbvralvw aAFa/zSWeyA|Fy=FaxAUWeyA|Fy=Fx
14 4 13 sylibr φaAFa/zSWeyA|Fy=Fa
15 14 r19.21bi φaAFa/zSWeyA|Fy=Fa