| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fof |
|
| 2 |
1
|
fdmd |
|
| 3 |
2
|
eqeq1d |
|
| 4 |
|
dm0rn0 |
|
| 5 |
|
forn |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
4 6
|
bitrid |
|
| 8 |
3 7
|
bitr3d |
|
| 9 |
8
|
necon3bid |
|
| 10 |
9
|
biimpac |
|
| 11 |
|
vex |
|
| 12 |
11
|
dmex |
|
| 13 |
2 12
|
eqeltrrdi |
|
| 14 |
|
focdmex |
|
| 15 |
13 14
|
mpcom |
|
| 16 |
|
0sdomg |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
adantl |
|
| 19 |
10 18
|
mpbird |
|
| 20 |
19
|
ex |
|
| 21 |
|
fodomg |
|
| 22 |
13 21
|
mpcom |
|
| 23 |
20 22
|
jca2 |
|
| 24 |
23
|
exlimdv |
|
| 25 |
24
|
imp |
|
| 26 |
|
sdomdomtr |
|
| 27 |
|
reldom |
|
| 28 |
27
|
brrelex2i |
|
| 29 |
28
|
adantl |
|
| 30 |
|
0sdomg |
|
| 31 |
29 30
|
syl |
|
| 32 |
26 31
|
mpbid |
|
| 33 |
|
fodomr |
|
| 34 |
32 33
|
jca |
|
| 35 |
25 34
|
impbii |
|