Metamath Proof Explorer


Theorem fodomb

Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of TakeutiZaring p. 93. (Contributed by NM, 29-Jul-2004)

Ref Expression
Assertion fodomb Aff:AontoBBBA

Proof

Step Hyp Ref Expression
1 fof f:AontoBf:AB
2 1 fdmd f:AontoBdomf=A
3 2 eqeq1d f:AontoBdomf=A=
4 dm0rn0 domf=ranf=
5 forn f:AontoBranf=B
6 5 eqeq1d f:AontoBranf=B=
7 4 6 bitrid f:AontoBdomf=B=
8 3 7 bitr3d f:AontoBA=B=
9 8 necon3bid f:AontoBAB
10 9 biimpac Af:AontoBB
11 vex fV
12 11 dmex domfV
13 2 12 eqeltrrdi f:AontoBAV
14 focdmex AVf:AontoBBV
15 13 14 mpcom f:AontoBBV
16 0sdomg BVBB
17 15 16 syl f:AontoBBB
18 17 adantl Af:AontoBBB
19 10 18 mpbird Af:AontoBB
20 19 ex Af:AontoBB
21 fodomg AVf:AontoBBA
22 13 21 mpcom f:AontoBBA
23 20 22 jca2 Af:AontoBBBA
24 23 exlimdv Aff:AontoBBBA
25 24 imp Aff:AontoBBBA
26 sdomdomtr BBAA
27 reldom Rel
28 27 brrelex2i BAAV
29 28 adantl BBAAV
30 0sdomg AVAA
31 29 30 syl BBAAA
32 26 31 mpbid BBAA
33 fodomr BBAff:AontoB
34 32 33 jca BBAAff:AontoB
35 25 34 impbii Aff:AontoBBBA