Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of TakeutiZaring p. 93. (Contributed by NM, 29-Jul-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | fodomb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof | |
|
2 | 1 | fdmd | |
3 | 2 | eqeq1d | |
4 | dm0rn0 | |
|
5 | forn | |
|
6 | 5 | eqeq1d | |
7 | 4 6 | bitrid | |
8 | 3 7 | bitr3d | |
9 | 8 | necon3bid | |
10 | 9 | biimpac | |
11 | vex | |
|
12 | 11 | dmex | |
13 | 2 12 | eqeltrrdi | |
14 | focdmex | |
|
15 | 13 14 | mpcom | |
16 | 0sdomg | |
|
17 | 15 16 | syl | |
18 | 17 | adantl | |
19 | 10 18 | mpbird | |
20 | 19 | ex | |
21 | fodomg | |
|
22 | 13 21 | mpcom | |
23 | 20 22 | jca2 | |
24 | 23 | exlimdv | |
25 | 24 | imp | |
26 | sdomdomtr | |
|
27 | reldom | |
|
28 | 27 | brrelex2i | |
29 | 28 | adantl | |
30 | 0sdomg | |
|
31 | 29 30 | syl | |
32 | 26 31 | mpbid | |
33 | fodomr | |
|
34 | 32 33 | jca | |
35 | 25 34 | impbii | |