| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodm1.1 |  | 
						
							| 2 |  | fprodm1.2 |  | 
						
							| 3 |  | fprodm1.3 |  | 
						
							| 4 |  | fzp1nel |  | 
						
							| 5 |  | eluzelz |  | 
						
							| 6 | 1 5 | syl |  | 
						
							| 7 | 6 | zcnd |  | 
						
							| 8 |  | 1cnd |  | 
						
							| 9 | 7 8 | npcand |  | 
						
							| 10 | 9 | eleq1d |  | 
						
							| 11 | 4 10 | mtbii |  | 
						
							| 12 |  | disjsn |  | 
						
							| 13 | 11 12 | sylibr |  | 
						
							| 14 |  | eluzel2 |  | 
						
							| 15 | 1 14 | syl |  | 
						
							| 16 |  | peano2zm |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 15 | zcnd |  | 
						
							| 19 | 18 8 | npcand |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 | 1 20 | eleqtrrd |  | 
						
							| 22 |  | eluzp1m1 |  | 
						
							| 23 | 17 21 22 | syl2anc |  | 
						
							| 24 |  | fzsuc2 |  | 
						
							| 25 | 15 23 24 | syl2anc |  | 
						
							| 26 | 9 | oveq2d |  | 
						
							| 27 | 9 | sneqd |  | 
						
							| 28 | 27 | uneq2d |  | 
						
							| 29 | 25 26 28 | 3eqtr3d |  | 
						
							| 30 |  | fzfid |  | 
						
							| 31 | 13 29 30 2 | fprodsplit |  | 
						
							| 32 | 3 | eleq1d |  | 
						
							| 33 | 2 | ralrimiva |  | 
						
							| 34 |  | eluzfz2 |  | 
						
							| 35 | 1 34 | syl |  | 
						
							| 36 | 32 33 35 | rspcdva |  | 
						
							| 37 | 3 | prodsn |  | 
						
							| 38 | 1 36 37 | syl2anc |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 31 39 | eqtrd |  |