Metamath Proof Explorer


Theorem fpwipodrs

Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion fpwipodrs AVtoInc𝒫AFinDirset

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 inex1g 𝒫AV𝒫AFinV
3 1 2 syl AV𝒫AFinV
4 0elpw 𝒫A
5 0fin Fin
6 4 5 elini 𝒫AFin
7 ne0i 𝒫AFin𝒫AFin
8 6 7 mp1i AV𝒫AFin
9 elin x𝒫AFinx𝒫AxFin
10 elin y𝒫AFiny𝒫AyFin
11 pwuncl x𝒫Ay𝒫Axy𝒫A
12 11 ad2ant2r x𝒫AxFiny𝒫AyFinxy𝒫A
13 unfi xFinyFinxyFin
14 13 ad2ant2l x𝒫AxFiny𝒫AyFinxyFin
15 12 14 elind x𝒫AxFiny𝒫AyFinxy𝒫AFin
16 9 10 15 syl2anb x𝒫AFiny𝒫AFinxy𝒫AFin
17 ssid xyxy
18 sseq2 z=xyxyzxyxy
19 18 rspcev xy𝒫AFinxyxyz𝒫AFinxyz
20 16 17 19 sylancl x𝒫AFiny𝒫AFinz𝒫AFinxyz
21 20 rgen2 x𝒫AFiny𝒫AFinz𝒫AFinxyz
22 21 a1i AVx𝒫AFiny𝒫AFinz𝒫AFinxyz
23 isipodrs toInc𝒫AFinDirset𝒫AFinV𝒫AFinx𝒫AFiny𝒫AFinz𝒫AFinxyz
24 3 8 22 23 syl3anbrc AVtoInc𝒫AFinDirset