Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fpwipodrs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg | |
|
2 | inex1g | |
|
3 | 1 2 | syl | |
4 | 0elpw | |
|
5 | 0fin | |
|
6 | 4 5 | elini | |
7 | ne0i | |
|
8 | 6 7 | mp1i | |
9 | elin | |
|
10 | elin | |
|
11 | pwuncl | |
|
12 | 11 | ad2ant2r | |
13 | unfi | |
|
14 | 13 | ad2ant2l | |
15 | 12 14 | elind | |
16 | 9 10 15 | syl2anb | |
17 | ssid | |
|
18 | sseq2 | |
|
19 | 18 | rspcev | |
20 | 16 17 19 | sylancl | |
21 | 20 | rgen2 | |
22 | 21 | a1i | |
23 | isipodrs | |
|
24 | 3 8 22 23 | syl3anbrc | |