Metamath Proof Explorer


Theorem ipodrsima

Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypotheses ipodrsima.f φ F Fn 𝒫 A
ipodrsima.m φ u v v A F u F v
ipodrsima.d φ toInc B Dirset
ipodrsima.s φ B 𝒫 A
ipodrsima.a φ F B V
Assertion ipodrsima φ toInc F B Dirset

Proof

Step Hyp Ref Expression
1 ipodrsima.f φ F Fn 𝒫 A
2 ipodrsima.m φ u v v A F u F v
3 ipodrsima.d φ toInc B Dirset
4 ipodrsima.s φ B 𝒫 A
5 ipodrsima.a φ F B V
6 5 elexd φ F B V
7 isipodrs toInc B Dirset B V B a B b B c B a b c
8 3 7 sylib φ B V B a B b B c B a b c
9 8 simp2d φ B
10 fnimaeq0 F Fn 𝒫 A B 𝒫 A F B = B =
11 1 4 10 syl2anc φ F B = B =
12 11 necon3bid φ F B B
13 9 12 mpbird φ F B
14 8 simp3d φ a B b B c B a b c
15 simplll φ a B b B c B a c φ
16 simpr φ a B b B c B a c a c
17 4 ad2antrr φ a B b B c B B 𝒫 A
18 simprr φ a B b B c B c B
19 17 18 sseldd φ a B b B c B c 𝒫 A
20 19 elpwid φ a B b B c B c A
21 20 adantr φ a B b B c B a c c A
22 vex a V
23 vex c V
24 sseq12 u = a v = c u v a c
25 sseq1 v = c v A c A
26 25 adantl u = a v = c v A c A
27 24 26 anbi12d u = a v = c u v v A a c c A
28 27 anbi2d u = a v = c φ u v v A φ a c c A
29 fveq2 u = a F u = F a
30 fveq2 v = c F v = F c
31 sseq12 F u = F a F v = F c F u F v F a F c
32 29 30 31 syl2an u = a v = c F u F v F a F c
33 28 32 imbi12d u = a v = c φ u v v A F u F v φ a c c A F a F c
34 22 23 33 2 vtocl2 φ a c c A F a F c
35 15 16 21 34 syl12anc φ a B b B c B a c F a F c
36 35 ex φ a B b B c B a c F a F c
37 simplll φ a B b B c B b c φ
38 simpr φ a B b B c B b c b c
39 20 adantr φ a B b B c B b c c A
40 vex b V
41 sseq12 u = b v = c u v b c
42 25 adantl u = b v = c v A c A
43 41 42 anbi12d u = b v = c u v v A b c c A
44 43 anbi2d u = b v = c φ u v v A φ b c c A
45 fveq2 u = b F u = F b
46 sseq12 F u = F b F v = F c F u F v F b F c
47 45 30 46 syl2an u = b v = c F u F v F b F c
48 44 47 imbi12d u = b v = c φ u v v A F u F v φ b c c A F b F c
49 40 23 48 2 vtocl2 φ b c c A F b F c
50 37 38 39 49 syl12anc φ a B b B c B b c F b F c
51 50 ex φ a B b B c B b c F b F c
52 36 51 anim12d φ a B b B c B a c b c F a F c F b F c
53 unss a c b c a b c
54 unss F a F c F b F c F a F b F c
55 52 53 54 3imtr3g φ a B b B c B a b c F a F b F c
56 55 anassrs φ a B b B c B a b c F a F b F c
57 56 reximdva φ a B b B c B a b c c B F a F b F c
58 57 ralimdva φ a B b B c B a b c b B c B F a F b F c
59 58 ralimdva φ a B b B c B a b c a B b B c B F a F b F c
60 14 59 mpd φ a B b B c B F a F b F c
61 uneq1 x = F a x y = F a y
62 61 sseq1d x = F a x y z F a y z
63 62 rexbidv x = F a z F B x y z z F B F a y z
64 63 ralbidv x = F a y F B z F B x y z y F B z F B F a y z
65 64 ralima F Fn 𝒫 A B 𝒫 A x F B y F B z F B x y z a B y F B z F B F a y z
66 1 4 65 syl2anc φ x F B y F B z F B x y z a B y F B z F B F a y z
67 uneq2 y = F b F a y = F a F b
68 67 sseq1d y = F b F a y z F a F b z
69 68 rexbidv y = F b z F B F a y z z F B F a F b z
70 69 ralima F Fn 𝒫 A B 𝒫 A y F B z F B F a y z b B z F B F a F b z
71 1 4 70 syl2anc φ y F B z F B F a y z b B z F B F a F b z
72 sseq2 z = F c F a F b z F a F b F c
73 72 rexima F Fn 𝒫 A B 𝒫 A z F B F a F b z c B F a F b F c
74 1 4 73 syl2anc φ z F B F a F b z c B F a F b F c
75 74 ralbidv φ b B z F B F a F b z b B c B F a F b F c
76 71 75 bitrd φ y F B z F B F a y z b B c B F a F b F c
77 76 ralbidv φ a B y F B z F B F a y z a B b B c B F a F b F c
78 66 77 bitrd φ x F B y F B z F B x y z a B b B c B F a F b F c
79 60 78 mpbird φ x F B y F B z F B x y z
80 isipodrs toInc F B Dirset F B V F B x F B y F B z F B x y z
81 6 13 79 80 syl3anbrc φ toInc F B Dirset