Metamath Proof Explorer


Theorem ipodrsima

Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypotheses ipodrsima.f φFFn𝒫A
ipodrsima.m φuvvAFuFv
ipodrsima.d φtoIncBDirset
ipodrsima.s φB𝒫A
ipodrsima.a φFBV
Assertion ipodrsima φtoIncFBDirset

Proof

Step Hyp Ref Expression
1 ipodrsima.f φFFn𝒫A
2 ipodrsima.m φuvvAFuFv
3 ipodrsima.d φtoIncBDirset
4 ipodrsima.s φB𝒫A
5 ipodrsima.a φFBV
6 5 elexd φFBV
7 isipodrs toIncBDirsetBVBaBbBcBabc
8 3 7 sylib φBVBaBbBcBabc
9 8 simp2d φB
10 fnimaeq0 FFn𝒫AB𝒫AFB=B=
11 1 4 10 syl2anc φFB=B=
12 11 necon3bid φFBB
13 9 12 mpbird φFB
14 8 simp3d φaBbBcBabc
15 simplll φaBbBcBacφ
16 simpr φaBbBcBacac
17 4 ad2antrr φaBbBcBB𝒫A
18 simprr φaBbBcBcB
19 17 18 sseldd φaBbBcBc𝒫A
20 19 elpwid φaBbBcBcA
21 20 adantr φaBbBcBaccA
22 vex aV
23 vex cV
24 sseq12 u=av=cuvac
25 sseq1 v=cvAcA
26 25 adantl u=av=cvAcA
27 24 26 anbi12d u=av=cuvvAaccA
28 27 anbi2d u=av=cφuvvAφaccA
29 fveq2 u=aFu=Fa
30 fveq2 v=cFv=Fc
31 sseq12 Fu=FaFv=FcFuFvFaFc
32 29 30 31 syl2an u=av=cFuFvFaFc
33 28 32 imbi12d u=av=cφuvvAFuFvφaccAFaFc
34 22 23 33 2 vtocl2 φaccAFaFc
35 15 16 21 34 syl12anc φaBbBcBacFaFc
36 35 ex φaBbBcBacFaFc
37 simplll φaBbBcBbcφ
38 simpr φaBbBcBbcbc
39 20 adantr φaBbBcBbccA
40 vex bV
41 sseq12 u=bv=cuvbc
42 25 adantl u=bv=cvAcA
43 41 42 anbi12d u=bv=cuvvAbccA
44 43 anbi2d u=bv=cφuvvAφbccA
45 fveq2 u=bFu=Fb
46 sseq12 Fu=FbFv=FcFuFvFbFc
47 45 30 46 syl2an u=bv=cFuFvFbFc
48 44 47 imbi12d u=bv=cφuvvAFuFvφbccAFbFc
49 40 23 48 2 vtocl2 φbccAFbFc
50 37 38 39 49 syl12anc φaBbBcBbcFbFc
51 50 ex φaBbBcBbcFbFc
52 36 51 anim12d φaBbBcBacbcFaFcFbFc
53 unss acbcabc
54 unss FaFcFbFcFaFbFc
55 52 53 54 3imtr3g φaBbBcBabcFaFbFc
56 55 anassrs φaBbBcBabcFaFbFc
57 56 reximdva φaBbBcBabccBFaFbFc
58 57 ralimdva φaBbBcBabcbBcBFaFbFc
59 58 ralimdva φaBbBcBabcaBbBcBFaFbFc
60 14 59 mpd φaBbBcBFaFbFc
61 uneq1 x=Faxy=Fay
62 61 sseq1d x=FaxyzFayz
63 62 rexbidv x=FazFBxyzzFBFayz
64 63 ralbidv x=FayFBzFBxyzyFBzFBFayz
65 64 ralima FFn𝒫AB𝒫AxFByFBzFBxyzaByFBzFBFayz
66 1 4 65 syl2anc φxFByFBzFBxyzaByFBzFBFayz
67 uneq2 y=FbFay=FaFb
68 67 sseq1d y=FbFayzFaFbz
69 68 rexbidv y=FbzFBFayzzFBFaFbz
70 69 ralima FFn𝒫AB𝒫AyFBzFBFayzbBzFBFaFbz
71 1 4 70 syl2anc φyFBzFBFayzbBzFBFaFbz
72 sseq2 z=FcFaFbzFaFbFc
73 72 rexima FFn𝒫AB𝒫AzFBFaFbzcBFaFbFc
74 1 4 73 syl2anc φzFBFaFbzcBFaFbFc
75 74 ralbidv φbBzFBFaFbzbBcBFaFbFc
76 71 75 bitrd φyFBzFBFayzbBcBFaFbFc
77 76 ralbidv φaByFBzFBFayzaBbBcBFaFbFc
78 66 77 bitrd φxFByFBzFBxyzaBbBcBFaFbFc
79 60 78 mpbird φxFByFBzFBxyz
80 isipodrs toIncFBDirsetFBVFBxFByFBzFBxyz
81 6 13 79 80 syl3anbrc φtoIncFBDirset