| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipodrsima.f |
|
| 2 |
|
ipodrsima.m |
|
| 3 |
|
ipodrsima.d |
|
| 4 |
|
ipodrsima.s |
|
| 5 |
|
ipodrsima.a |
|
| 6 |
5
|
elexd |
|
| 7 |
|
isipodrs |
|
| 8 |
3 7
|
sylib |
|
| 9 |
8
|
simp2d |
|
| 10 |
|
fnimaeq0 |
|
| 11 |
1 4 10
|
syl2anc |
|
| 12 |
11
|
necon3bid |
|
| 13 |
9 12
|
mpbird |
|
| 14 |
8
|
simp3d |
|
| 15 |
|
simplll |
|
| 16 |
|
simpr |
|
| 17 |
4
|
ad2antrr |
|
| 18 |
|
simprr |
|
| 19 |
17 18
|
sseldd |
|
| 20 |
19
|
elpwid |
|
| 21 |
20
|
adantr |
|
| 22 |
|
vex |
|
| 23 |
|
vex |
|
| 24 |
|
sseq12 |
|
| 25 |
|
sseq1 |
|
| 26 |
25
|
adantl |
|
| 27 |
24 26
|
anbi12d |
|
| 28 |
27
|
anbi2d |
|
| 29 |
|
fveq2 |
|
| 30 |
|
fveq2 |
|
| 31 |
|
sseq12 |
|
| 32 |
29 30 31
|
syl2an |
|
| 33 |
28 32
|
imbi12d |
|
| 34 |
22 23 33 2
|
vtocl2 |
|
| 35 |
15 16 21 34
|
syl12anc |
|
| 36 |
35
|
ex |
|
| 37 |
|
simplll |
|
| 38 |
|
simpr |
|
| 39 |
20
|
adantr |
|
| 40 |
|
vex |
|
| 41 |
|
sseq12 |
|
| 42 |
25
|
adantl |
|
| 43 |
41 42
|
anbi12d |
|
| 44 |
43
|
anbi2d |
|
| 45 |
|
fveq2 |
|
| 46 |
|
sseq12 |
|
| 47 |
45 30 46
|
syl2an |
|
| 48 |
44 47
|
imbi12d |
|
| 49 |
40 23 48 2
|
vtocl2 |
|
| 50 |
37 38 39 49
|
syl12anc |
|
| 51 |
50
|
ex |
|
| 52 |
36 51
|
anim12d |
|
| 53 |
|
unss |
|
| 54 |
|
unss |
|
| 55 |
52 53 54
|
3imtr3g |
|
| 56 |
55
|
anassrs |
|
| 57 |
56
|
reximdva |
|
| 58 |
57
|
ralimdva |
|
| 59 |
58
|
ralimdva |
|
| 60 |
14 59
|
mpd |
|
| 61 |
|
uneq1 |
|
| 62 |
61
|
sseq1d |
|
| 63 |
62
|
rexbidv |
|
| 64 |
63
|
ralbidv |
|
| 65 |
64
|
ralima |
|
| 66 |
1 4 65
|
syl2anc |
|
| 67 |
|
uneq2 |
|
| 68 |
67
|
sseq1d |
|
| 69 |
68
|
rexbidv |
|
| 70 |
69
|
ralima |
|
| 71 |
1 4 70
|
syl2anc |
|
| 72 |
|
sseq2 |
|
| 73 |
72
|
rexima |
|
| 74 |
1 4 73
|
syl2anc |
|
| 75 |
74
|
ralbidv |
|
| 76 |
71 75
|
bitrd |
|
| 77 |
76
|
ralbidv |
|
| 78 |
66 77
|
bitrd |
|
| 79 |
60 78
|
mpbird |
|
| 80 |
|
isipodrs |
|
| 81 |
6 13 79 80
|
syl3anbrc |
|