Metamath Proof Explorer


Theorem fpwwe2cbv

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 3-Jun-2015)

Ref Expression
Hypothesis fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
Assertion fpwwe2cbv W=as|aAsa×asWeaza[˙s-1z/v]˙vFsv×v=z

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 simpl x=ar=sx=a
3 2 sseq1d x=ar=sxAaA
4 simpr x=ar=sr=s
5 2 sqxpeqd x=ar=sx×x=a×a
6 4 5 sseq12d x=ar=srx×xsa×a
7 3 6 anbi12d x=ar=sxArx×xaAsa×a
8 weeq2 x=arWexrWea
9 weeq1 r=srWeasWea
10 8 9 sylan9bb x=ar=srWexsWea
11 id u=vu=v
12 11 sqxpeqd u=vu×u=v×v
13 12 ineq2d u=vru×u=rv×v
14 11 13 oveq12d u=vuFru×u=vFrv×v
15 14 eqeq1d u=vuFru×u=yvFrv×v=y
16 15 cbvsbcvw [˙r-1y/u]˙uFru×u=y[˙r-1y/v]˙vFrv×v=y
17 sneq y=zy=z
18 17 imaeq2d y=zr-1y=r-1z
19 eqeq2 y=zvFrv×v=yvFrv×v=z
20 18 19 sbceqbid y=z[˙r-1y/v]˙vFrv×v=y[˙r-1z/v]˙vFrv×v=z
21 16 20 bitrid y=z[˙r-1y/u]˙uFru×u=y[˙r-1z/v]˙vFrv×v=z
22 21 cbvralvw yx[˙r-1y/u]˙uFru×u=yzx[˙r-1z/v]˙vFrv×v=z
23 4 cnveqd x=ar=sr-1=s-1
24 23 imaeq1d x=ar=sr-1z=s-1z
25 4 ineq1d x=ar=srv×v=sv×v
26 25 oveq2d x=ar=svFrv×v=vFsv×v
27 26 eqeq1d x=ar=svFrv×v=zvFsv×v=z
28 24 27 sbceqbid x=ar=s[˙r-1z/v]˙vFrv×v=z[˙s-1z/v]˙vFsv×v=z
29 2 28 raleqbidv x=ar=szx[˙r-1z/v]˙vFrv×v=zza[˙s-1z/v]˙vFsv×v=z
30 22 29 bitrid x=ar=syx[˙r-1y/u]˙uFru×u=yza[˙s-1z/v]˙vFsv×v=z
31 10 30 anbi12d x=ar=srWexyx[˙r-1y/u]˙uFru×u=ysWeaza[˙s-1z/v]˙vFsv×v=z
32 7 31 anbi12d x=ar=sxArx×xrWexyx[˙r-1y/u]˙uFru×u=yaAsa×asWeaza[˙s-1z/v]˙vFsv×v=z
33 32 cbvopabv xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y=as|aAsa×asWeaza[˙s-1z/v]˙vFsv×v=z
34 1 33 eqtri W=as|aAsa×asWeaza[˙s-1z/v]˙vFsv×v=z