Metamath Proof Explorer


Theorem frd

Description: A nonempty subset of an R -well-founded class has an R -minimal element (deduction form). (Contributed by BJ, 16-Nov-2024)

Ref Expression
Hypotheses frd.fr φ R Fr A
frd.ss φ B A
frd.ex φ B V
frd.n0 φ B
Assertion frd φ x B y B ¬ y R x

Proof

Step Hyp Ref Expression
1 frd.fr φ R Fr A
2 frd.ss φ B A
3 frd.ex φ B V
4 frd.n0 φ B
5 simpr φ z = B z = B
6 biidd φ z = B ¬ y R x ¬ y R x
7 5 6 raleqbidv φ z = B y z ¬ y R x y B ¬ y R x
8 5 7 rexeqbidv φ z = B x z y z ¬ y R x x B y B ¬ y R x
9 3 2 elpwd φ B 𝒫 A
10 nelsn B ¬ B
11 4 10 syl φ ¬ B
12 9 11 eldifd φ B 𝒫 A
13 dffr6 R Fr A z 𝒫 A x z y z ¬ y R x
14 1 13 sylib φ z 𝒫 A x z y z ¬ y R x
15 8 12 14 rspcdv2 φ x B y B ¬ y R x