Metamath Proof Explorer


Theorem frege120

Description: Simplified application of one direction of dffrege115 . Proposition 120 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x XU
frege118.y YV
frege120.a AW
Assertion frege120 FunR-1-1YRXYRAA=X

Proof

Step Hyp Ref Expression
1 frege116.x XU
2 frege118.y YV
3 frege120.a AW
4 3 frege58c aYRaa=X[˙A/a]˙YRaa=X
5 sbcim1 [˙A/a]˙YRaa=X[˙A/a]˙YRa[˙A/a]˙a=X
6 sbcbr2g AW[˙A/a]˙YRaYRA/aa
7 3 6 ax-mp [˙A/a]˙YRaYRA/aa
8 csbvarg AWA/aa=A
9 3 8 ax-mp A/aa=A
10 9 breq2i YRA/aaYRA
11 7 10 bitri [˙A/a]˙YRaYRA
12 sbceq1g AW[˙A/a]˙a=XA/aa=X
13 3 12 ax-mp [˙A/a]˙a=XA/aa=X
14 9 eqeq1i A/aa=XA=X
15 13 14 bitri [˙A/a]˙a=XA=X
16 5 11 15 3imtr3g [˙A/a]˙YRaa=XYRAA=X
17 4 16 syl aYRaa=XYRAA=X
18 1 2 frege119 aYRaa=XYRAA=XFunR-1-1YRXYRAA=X
19 17 18 ax-mp FunR-1-1YRXYRAA=X