Metamath Proof Explorer


Theorem frege133d

Description: If F is a function and A and B both follow X in the transitive closure of F , then (for distinct A and B ) either A follows B or B follows A in the transitive closure of F (or both if it loops). Similar to Proposition 133 of Frege1879 p. 86. Compare with frege133 . (Contributed by RP, 18-Jul-2020)

Ref Expression
Hypotheses frege133d.f φ F V
frege133d.xa φ X t+ F A
frege133d.xb φ X t+ F B
frege133d.fun φ Fun F
Assertion frege133d φ A t+ F B A = B B t+ F A

Proof

Step Hyp Ref Expression
1 frege133d.f φ F V
2 frege133d.xa φ X t+ F A
3 frege133d.xb φ X t+ F B
4 frege133d.fun φ Fun F
5 funrel Fun F Rel F
6 4 5 syl φ Rel F
7 reltrclfv F V Rel F Rel t+ F
8 1 6 7 syl2anc φ Rel t+ F
9 eliniseg2 Rel t+ F X t+ F -1 B X t+ F B
10 8 9 syl φ X t+ F -1 B X t+ F B
11 3 10 mpbird φ X t+ F -1 B
12 brrelex2 Rel t+ F X t+ F A A V
13 8 2 12 syl2anc φ A V
14 un12 t+ F -1 B B t+ F B = B t+ F -1 B t+ F B
15 14 a1i φ t+ F -1 B B t+ F B = B t+ F -1 B t+ F B
16 1 15 4 frege131d φ F t+ F -1 B B t+ F B t+ F -1 B B t+ F B
17 1 11 13 2 16 frege83d φ A t+ F -1 B B t+ F B
18 elun A B t+ F B A B A t+ F B
19 18 orbi2i A t+ F -1 B A B t+ F B A t+ F -1 B A B A t+ F B
20 elun A t+ F -1 B B t+ F B A t+ F -1 B A B t+ F B
21 3orass A t+ F -1 B A B A t+ F B A t+ F -1 B A B A t+ F B
22 19 20 21 3bitr4i A t+ F -1 B B t+ F B A t+ F -1 B A B A t+ F B
23 17 22 sylib φ A t+ F -1 B A B A t+ F B
24 eliniseg2 Rel t+ F A t+ F -1 B A t+ F B
25 8 24 syl φ A t+ F -1 B A t+ F B
26 25 biimpd φ A t+ F -1 B A t+ F B
27 elsni A B A = B
28 27 a1i φ A B A = B
29 elrelimasn Rel t+ F A t+ F B B t+ F A
30 8 29 syl φ A t+ F B B t+ F A
31 30 biimpd φ A t+ F B B t+ F A
32 26 28 31 3orim123d φ A t+ F -1 B A B A t+ F B A t+ F B A = B B t+ F A
33 23 32 mpd φ A t+ F B A = B B t+ F A