Step |
Hyp |
Ref |
Expression |
1 |
|
frege133d.f |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
2 |
|
frege133d.xa |
⊢ ( 𝜑 → 𝑋 ( t+ ‘ 𝐹 ) 𝐴 ) |
3 |
|
frege133d.xb |
⊢ ( 𝜑 → 𝑋 ( t+ ‘ 𝐹 ) 𝐵 ) |
4 |
|
frege133d.fun |
⊢ ( 𝜑 → Fun 𝐹 ) |
5 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → Rel 𝐹 ) |
7 |
|
reltrclfv |
⊢ ( ( 𝐹 ∈ V ∧ Rel 𝐹 ) → Rel ( t+ ‘ 𝐹 ) ) |
8 |
1 6 7
|
syl2anc |
⊢ ( 𝜑 → Rel ( t+ ‘ 𝐹 ) ) |
9 |
|
eliniseg2 |
⊢ ( Rel ( t+ ‘ 𝐹 ) → ( 𝑋 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ↔ 𝑋 ( t+ ‘ 𝐹 ) 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ↔ 𝑋 ( t+ ‘ 𝐹 ) 𝐵 ) ) |
11 |
3 10
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) |
12 |
|
brrelex2 |
⊢ ( ( Rel ( t+ ‘ 𝐹 ) ∧ 𝑋 ( t+ ‘ 𝐹 ) 𝐴 ) → 𝐴 ∈ V ) |
13 |
8 2 12
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
14 |
|
un12 |
⊢ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) = ( { 𝐵 } ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) = ( { 𝐵 } ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) |
16 |
1 15 4
|
frege131d |
⊢ ( 𝜑 → ( 𝐹 “ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) ⊆ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) |
17 |
1 11 13 2 16
|
frege83d |
⊢ ( 𝜑 → 𝐴 ∈ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) |
18 |
|
elun |
⊢ ( 𝐴 ∈ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ↔ ( 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) |
19 |
18
|
orbi2i |
⊢ ( ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ 𝐴 ∈ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ↔ ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ ( 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) |
20 |
|
elun |
⊢ ( 𝐴 ∈ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ↔ ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ 𝐴 ∈ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) |
21 |
|
3orass |
⊢ ( ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ ( 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ) |
22 |
19 20 21
|
3bitr4i |
⊢ ( 𝐴 ∈ ( ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) ↔ ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) |
23 |
17 22
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) ) |
24 |
|
eliniseg2 |
⊢ ( Rel ( t+ ‘ 𝐹 ) → ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ↔ 𝐴 ( t+ ‘ 𝐹 ) 𝐵 ) ) |
25 |
8 24
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ↔ 𝐴 ( t+ ‘ 𝐹 ) 𝐵 ) ) |
26 |
25
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) → 𝐴 ( t+ ‘ 𝐹 ) 𝐵 ) ) |
27 |
|
elsni |
⊢ ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝐵 } → 𝐴 = 𝐵 ) ) |
29 |
|
elrelimasn |
⊢ ( Rel ( t+ ‘ 𝐹 ) → ( 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ↔ 𝐵 ( t+ ‘ 𝐹 ) 𝐴 ) ) |
30 |
8 29
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ↔ 𝐵 ( t+ ‘ 𝐹 ) 𝐴 ) ) |
31 |
30
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) → 𝐵 ( t+ ‘ 𝐹 ) 𝐴 ) ) |
32 |
26 28 31
|
3orim123d |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( ◡ ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ∨ 𝐴 ∈ { 𝐵 } ∨ 𝐴 ∈ ( ( t+ ‘ 𝐹 ) “ { 𝐵 } ) ) → ( 𝐴 ( t+ ‘ 𝐹 ) 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ( t+ ‘ 𝐹 ) 𝐴 ) ) ) |
33 |
23 32
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ( t+ ‘ 𝐹 ) 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ( t+ ‘ 𝐹 ) 𝐴 ) ) |