Step |
Hyp |
Ref |
Expression |
1 |
|
frege133d.f |
|- ( ph -> F e. _V ) |
2 |
|
frege133d.xa |
|- ( ph -> X ( t+ ` F ) A ) |
3 |
|
frege133d.xb |
|- ( ph -> X ( t+ ` F ) B ) |
4 |
|
frege133d.fun |
|- ( ph -> Fun F ) |
5 |
|
funrel |
|- ( Fun F -> Rel F ) |
6 |
4 5
|
syl |
|- ( ph -> Rel F ) |
7 |
|
reltrclfv |
|- ( ( F e. _V /\ Rel F ) -> Rel ( t+ ` F ) ) |
8 |
1 6 7
|
syl2anc |
|- ( ph -> Rel ( t+ ` F ) ) |
9 |
|
eliniseg2 |
|- ( Rel ( t+ ` F ) -> ( X e. ( `' ( t+ ` F ) " { B } ) <-> X ( t+ ` F ) B ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( X e. ( `' ( t+ ` F ) " { B } ) <-> X ( t+ ` F ) B ) ) |
11 |
3 10
|
mpbird |
|- ( ph -> X e. ( `' ( t+ ` F ) " { B } ) ) |
12 |
|
brrelex2 |
|- ( ( Rel ( t+ ` F ) /\ X ( t+ ` F ) A ) -> A e. _V ) |
13 |
8 2 12
|
syl2anc |
|- ( ph -> A e. _V ) |
14 |
|
un12 |
|- ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) = ( { B } u. ( ( `' ( t+ ` F ) " { B } ) u. ( ( t+ ` F ) " { B } ) ) ) |
15 |
14
|
a1i |
|- ( ph -> ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) = ( { B } u. ( ( `' ( t+ ` F ) " { B } ) u. ( ( t+ ` F ) " { B } ) ) ) ) |
16 |
1 15 4
|
frege131d |
|- ( ph -> ( F " ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) ) C_ ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) ) |
17 |
1 11 13 2 16
|
frege83d |
|- ( ph -> A e. ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) ) |
18 |
|
elun |
|- ( A e. ( { B } u. ( ( t+ ` F ) " { B } ) ) <-> ( A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) ) |
19 |
18
|
orbi2i |
|- ( ( A e. ( `' ( t+ ` F ) " { B } ) \/ A e. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) <-> ( A e. ( `' ( t+ ` F ) " { B } ) \/ ( A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) ) ) |
20 |
|
elun |
|- ( A e. ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) <-> ( A e. ( `' ( t+ ` F ) " { B } ) \/ A e. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) ) |
21 |
|
3orass |
|- ( ( A e. ( `' ( t+ ` F ) " { B } ) \/ A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) <-> ( A e. ( `' ( t+ ` F ) " { B } ) \/ ( A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) ) ) |
22 |
19 20 21
|
3bitr4i |
|- ( A e. ( ( `' ( t+ ` F ) " { B } ) u. ( { B } u. ( ( t+ ` F ) " { B } ) ) ) <-> ( A e. ( `' ( t+ ` F ) " { B } ) \/ A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) ) |
23 |
17 22
|
sylib |
|- ( ph -> ( A e. ( `' ( t+ ` F ) " { B } ) \/ A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) ) |
24 |
|
eliniseg2 |
|- ( Rel ( t+ ` F ) -> ( A e. ( `' ( t+ ` F ) " { B } ) <-> A ( t+ ` F ) B ) ) |
25 |
8 24
|
syl |
|- ( ph -> ( A e. ( `' ( t+ ` F ) " { B } ) <-> A ( t+ ` F ) B ) ) |
26 |
25
|
biimpd |
|- ( ph -> ( A e. ( `' ( t+ ` F ) " { B } ) -> A ( t+ ` F ) B ) ) |
27 |
|
elsni |
|- ( A e. { B } -> A = B ) |
28 |
27
|
a1i |
|- ( ph -> ( A e. { B } -> A = B ) ) |
29 |
|
elrelimasn |
|- ( Rel ( t+ ` F ) -> ( A e. ( ( t+ ` F ) " { B } ) <-> B ( t+ ` F ) A ) ) |
30 |
8 29
|
syl |
|- ( ph -> ( A e. ( ( t+ ` F ) " { B } ) <-> B ( t+ ` F ) A ) ) |
31 |
30
|
biimpd |
|- ( ph -> ( A e. ( ( t+ ` F ) " { B } ) -> B ( t+ ` F ) A ) ) |
32 |
26 28 31
|
3orim123d |
|- ( ph -> ( ( A e. ( `' ( t+ ` F ) " { B } ) \/ A e. { B } \/ A e. ( ( t+ ` F ) " { B } ) ) -> ( A ( t+ ` F ) B \/ A = B \/ B ( t+ ` F ) A ) ) ) |
33 |
23 32
|
mpd |
|- ( ph -> ( A ( t+ ` F ) B \/ A = B \/ B ( t+ ` F ) A ) ) |