Step |
Hyp |
Ref |
Expression |
1 |
|
frege131d.f |
|- ( ph -> F e. _V ) |
2 |
|
frege131d.a |
|- ( ph -> A = ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
3 |
|
frege131d.fun |
|- ( ph -> Fun F ) |
4 |
|
trclfvlb |
|- ( F e. _V -> F C_ ( t+ ` F ) ) |
5 |
|
imass1 |
|- ( F C_ ( t+ ` F ) -> ( F " U ) C_ ( ( t+ ` F ) " U ) ) |
6 |
1 4 5
|
3syl |
|- ( ph -> ( F " U ) C_ ( ( t+ ` F ) " U ) ) |
7 |
|
ssun2 |
|- ( ( t+ ` F ) " U ) C_ ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) |
8 |
|
ssun2 |
|- ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) |
9 |
7 8
|
sstri |
|- ( ( t+ ` F ) " U ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) |
10 |
6 9
|
sstrdi |
|- ( ph -> ( F " U ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
11 |
|
trclfvdecomr |
|- ( F e. _V -> ( t+ ` F ) = ( F u. ( ( t+ ` F ) o. F ) ) ) |
12 |
1 11
|
syl |
|- ( ph -> ( t+ ` F ) = ( F u. ( ( t+ ` F ) o. F ) ) ) |
13 |
12
|
cnveqd |
|- ( ph -> `' ( t+ ` F ) = `' ( F u. ( ( t+ ` F ) o. F ) ) ) |
14 |
|
cnvun |
|- `' ( F u. ( ( t+ ` F ) o. F ) ) = ( `' F u. `' ( ( t+ ` F ) o. F ) ) |
15 |
|
cnvco |
|- `' ( ( t+ ` F ) o. F ) = ( `' F o. `' ( t+ ` F ) ) |
16 |
15
|
uneq2i |
|- ( `' F u. `' ( ( t+ ` F ) o. F ) ) = ( `' F u. ( `' F o. `' ( t+ ` F ) ) ) |
17 |
14 16
|
eqtri |
|- `' ( F u. ( ( t+ ` F ) o. F ) ) = ( `' F u. ( `' F o. `' ( t+ ` F ) ) ) |
18 |
13 17
|
eqtrdi |
|- ( ph -> `' ( t+ ` F ) = ( `' F u. ( `' F o. `' ( t+ ` F ) ) ) ) |
19 |
18
|
coeq2d |
|- ( ph -> ( F o. `' ( t+ ` F ) ) = ( F o. ( `' F u. ( `' F o. `' ( t+ ` F ) ) ) ) ) |
20 |
|
coundi |
|- ( F o. ( `' F u. ( `' F o. `' ( t+ ` F ) ) ) ) = ( ( F o. `' F ) u. ( F o. ( `' F o. `' ( t+ ` F ) ) ) ) |
21 |
|
funcocnv2 |
|- ( Fun F -> ( F o. `' F ) = ( _I |` ran F ) ) |
22 |
3 21
|
syl |
|- ( ph -> ( F o. `' F ) = ( _I |` ran F ) ) |
23 |
|
coass |
|- ( ( F o. `' F ) o. `' ( t+ ` F ) ) = ( F o. ( `' F o. `' ( t+ ` F ) ) ) |
24 |
23
|
eqcomi |
|- ( F o. ( `' F o. `' ( t+ ` F ) ) ) = ( ( F o. `' F ) o. `' ( t+ ` F ) ) |
25 |
22
|
coeq1d |
|- ( ph -> ( ( F o. `' F ) o. `' ( t+ ` F ) ) = ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) |
26 |
24 25
|
eqtrid |
|- ( ph -> ( F o. ( `' F o. `' ( t+ ` F ) ) ) = ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) |
27 |
22 26
|
uneq12d |
|- ( ph -> ( ( F o. `' F ) u. ( F o. ( `' F o. `' ( t+ ` F ) ) ) ) = ( ( _I |` ran F ) u. ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) ) |
28 |
20 27
|
eqtrid |
|- ( ph -> ( F o. ( `' F u. ( `' F o. `' ( t+ ` F ) ) ) ) = ( ( _I |` ran F ) u. ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) ) |
29 |
19 28
|
eqtrd |
|- ( ph -> ( F o. `' ( t+ ` F ) ) = ( ( _I |` ran F ) u. ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) ) |
30 |
29
|
imaeq1d |
|- ( ph -> ( ( F o. `' ( t+ ` F ) ) " U ) = ( ( ( _I |` ran F ) u. ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) " U ) ) |
31 |
|
imaundir |
|- ( ( ( _I |` ran F ) u. ( ( _I |` ran F ) o. `' ( t+ ` F ) ) ) " U ) = ( ( ( _I |` ran F ) " U ) u. ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) ) |
32 |
30 31
|
eqtrdi |
|- ( ph -> ( ( F o. `' ( t+ ` F ) ) " U ) = ( ( ( _I |` ran F ) " U ) u. ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) ) ) |
33 |
|
resss |
|- ( _I |` ran F ) C_ _I |
34 |
|
imass1 |
|- ( ( _I |` ran F ) C_ _I -> ( ( _I |` ran F ) " U ) C_ ( _I " U ) ) |
35 |
33 34
|
ax-mp |
|- ( ( _I |` ran F ) " U ) C_ ( _I " U ) |
36 |
|
imai |
|- ( _I " U ) = U |
37 |
35 36
|
sseqtri |
|- ( ( _I |` ran F ) " U ) C_ U |
38 |
|
imaco |
|- ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) = ( ( _I |` ran F ) " ( `' ( t+ ` F ) " U ) ) |
39 |
|
imass1 |
|- ( ( _I |` ran F ) C_ _I -> ( ( _I |` ran F ) " ( `' ( t+ ` F ) " U ) ) C_ ( _I " ( `' ( t+ ` F ) " U ) ) ) |
40 |
33 39
|
ax-mp |
|- ( ( _I |` ran F ) " ( `' ( t+ ` F ) " U ) ) C_ ( _I " ( `' ( t+ ` F ) " U ) ) |
41 |
|
imai |
|- ( _I " ( `' ( t+ ` F ) " U ) ) = ( `' ( t+ ` F ) " U ) |
42 |
40 41
|
sseqtri |
|- ( ( _I |` ran F ) " ( `' ( t+ ` F ) " U ) ) C_ ( `' ( t+ ` F ) " U ) |
43 |
38 42
|
eqsstri |
|- ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) C_ ( `' ( t+ ` F ) " U ) |
44 |
|
unss12 |
|- ( ( ( ( _I |` ran F ) " U ) C_ U /\ ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) C_ ( `' ( t+ ` F ) " U ) ) -> ( ( ( _I |` ran F ) " U ) u. ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) ) C_ ( U u. ( `' ( t+ ` F ) " U ) ) ) |
45 |
37 43 44
|
mp2an |
|- ( ( ( _I |` ran F ) " U ) u. ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) ) C_ ( U u. ( `' ( t+ ` F ) " U ) ) |
46 |
|
ssun1 |
|- ( U u. ( `' ( t+ ` F ) " U ) ) C_ ( ( U u. ( `' ( t+ ` F ) " U ) ) u. ( ( t+ ` F ) " U ) ) |
47 |
|
unass |
|- ( ( U u. ( `' ( t+ ` F ) " U ) ) u. ( ( t+ ` F ) " U ) ) = ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) |
48 |
46 47
|
sseqtri |
|- ( U u. ( `' ( t+ ` F ) " U ) ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) |
49 |
45 48
|
sstri |
|- ( ( ( _I |` ran F ) " U ) u. ( ( ( _I |` ran F ) o. `' ( t+ ` F ) ) " U ) ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) |
50 |
32 49
|
eqsstrdi |
|- ( ph -> ( ( F o. `' ( t+ ` F ) ) " U ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
51 |
|
coss1 |
|- ( F C_ ( t+ ` F ) -> ( F o. ( t+ ` F ) ) C_ ( ( t+ ` F ) o. ( t+ ` F ) ) ) |
52 |
1 4 51
|
3syl |
|- ( ph -> ( F o. ( t+ ` F ) ) C_ ( ( t+ ` F ) o. ( t+ ` F ) ) ) |
53 |
|
trclfvcotrg |
|- ( ( t+ ` F ) o. ( t+ ` F ) ) C_ ( t+ ` F ) |
54 |
52 53
|
sstrdi |
|- ( ph -> ( F o. ( t+ ` F ) ) C_ ( t+ ` F ) ) |
55 |
|
imass1 |
|- ( ( F o. ( t+ ` F ) ) C_ ( t+ ` F ) -> ( ( F o. ( t+ ` F ) ) " U ) C_ ( ( t+ ` F ) " U ) ) |
56 |
54 55
|
syl |
|- ( ph -> ( ( F o. ( t+ ` F ) ) " U ) C_ ( ( t+ ` F ) " U ) ) |
57 |
56 9
|
sstrdi |
|- ( ph -> ( ( F o. ( t+ ` F ) ) " U ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
58 |
50 57
|
unssd |
|- ( ph -> ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
59 |
10 58
|
unssd |
|- ( ph -> ( ( F " U ) u. ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) ) C_ ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
60 |
2
|
imaeq2d |
|- ( ph -> ( F " A ) = ( F " ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) ) |
61 |
|
imaundi |
|- ( F " ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) = ( ( F " U ) u. ( F " ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) |
62 |
|
imaundi |
|- ( F " ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) = ( ( F " ( `' ( t+ ` F ) " U ) ) u. ( F " ( ( t+ ` F ) " U ) ) ) |
63 |
|
imaco |
|- ( ( F o. `' ( t+ ` F ) ) " U ) = ( F " ( `' ( t+ ` F ) " U ) ) |
64 |
63
|
eqcomi |
|- ( F " ( `' ( t+ ` F ) " U ) ) = ( ( F o. `' ( t+ ` F ) ) " U ) |
65 |
|
imaco |
|- ( ( F o. ( t+ ` F ) ) " U ) = ( F " ( ( t+ ` F ) " U ) ) |
66 |
65
|
eqcomi |
|- ( F " ( ( t+ ` F ) " U ) ) = ( ( F o. ( t+ ` F ) ) " U ) |
67 |
64 66
|
uneq12i |
|- ( ( F " ( `' ( t+ ` F ) " U ) ) u. ( F " ( ( t+ ` F ) " U ) ) ) = ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) |
68 |
62 67
|
eqtri |
|- ( F " ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) = ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) |
69 |
68
|
uneq2i |
|- ( ( F " U ) u. ( F " ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) = ( ( F " U ) u. ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) ) |
70 |
61 69
|
eqtri |
|- ( F " ( U u. ( ( `' ( t+ ` F ) " U ) u. ( ( t+ ` F ) " U ) ) ) ) = ( ( F " U ) u. ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) ) |
71 |
60 70
|
eqtrdi |
|- ( ph -> ( F " A ) = ( ( F " U ) u. ( ( ( F o. `' ( t+ ` F ) ) " U ) u. ( ( F o. ( t+ ` F ) ) " U ) ) ) ) |
72 |
59 71 2
|
3sstr4d |
|- ( ph -> ( F " A ) C_ A ) |