Metamath Proof Explorer


Theorem frege131d

Description: If F is a function and A contains all elements of U and all elements before or after those elements of U in the transitive closure of F , then the image under F of A is a subclass of A . Similar to Proposition 131 of Frege1879 p. 85. Compare with frege131 . (Contributed by RP, 17-Jul-2020)

Ref Expression
Hypotheses frege131d.f φ F V
frege131d.a φ A = U t+ F -1 U t+ F U
frege131d.fun φ Fun F
Assertion frege131d φ F A A

Proof

Step Hyp Ref Expression
1 frege131d.f φ F V
2 frege131d.a φ A = U t+ F -1 U t+ F U
3 frege131d.fun φ Fun F
4 trclfvlb F V F t+ F
5 imass1 F t+ F F U t+ F U
6 1 4 5 3syl φ F U t+ F U
7 ssun2 t+ F U t+ F -1 U t+ F U
8 ssun2 t+ F -1 U t+ F U U t+ F -1 U t+ F U
9 7 8 sstri t+ F U U t+ F -1 U t+ F U
10 6 9 sstrdi φ F U U t+ F -1 U t+ F U
11 trclfvdecomr F V t+ F = F t+ F F
12 1 11 syl φ t+ F = F t+ F F
13 12 cnveqd φ t+ F -1 = F t+ F F -1
14 cnvun F t+ F F -1 = F -1 t+ F F -1
15 cnvco t+ F F -1 = F -1 t+ F -1
16 15 uneq2i F -1 t+ F F -1 = F -1 F -1 t+ F -1
17 14 16 eqtri F t+ F F -1 = F -1 F -1 t+ F -1
18 13 17 eqtrdi φ t+ F -1 = F -1 F -1 t+ F -1
19 18 coeq2d φ F t+ F -1 = F F -1 F -1 t+ F -1
20 coundi F F -1 F -1 t+ F -1 = F F -1 F F -1 t+ F -1
21 funcocnv2 Fun F F F -1 = I ran F
22 3 21 syl φ F F -1 = I ran F
23 coass F F -1 t+ F -1 = F F -1 t+ F -1
24 23 eqcomi F F -1 t+ F -1 = F F -1 t+ F -1
25 22 coeq1d φ F F -1 t+ F -1 = I ran F t+ F -1
26 24 25 eqtrid φ F F -1 t+ F -1 = I ran F t+ F -1
27 22 26 uneq12d φ F F -1 F F -1 t+ F -1 = I ran F I ran F t+ F -1
28 20 27 eqtrid φ F F -1 F -1 t+ F -1 = I ran F I ran F t+ F -1
29 19 28 eqtrd φ F t+ F -1 = I ran F I ran F t+ F -1
30 29 imaeq1d φ F t+ F -1 U = I ran F I ran F t+ F -1 U
31 imaundir I ran F I ran F t+ F -1 U = I ran F U I ran F t+ F -1 U
32 30 31 eqtrdi φ F t+ F -1 U = I ran F U I ran F t+ F -1 U
33 resss I ran F I
34 imass1 I ran F I I ran F U I U
35 33 34 ax-mp I ran F U I U
36 imai I U = U
37 35 36 sseqtri I ran F U U
38 imaco I ran F t+ F -1 U = I ran F t+ F -1 U
39 imass1 I ran F I I ran F t+ F -1 U I t+ F -1 U
40 33 39 ax-mp I ran F t+ F -1 U I t+ F -1 U
41 imai I t+ F -1 U = t+ F -1 U
42 40 41 sseqtri I ran F t+ F -1 U t+ F -1 U
43 38 42 eqsstri I ran F t+ F -1 U t+ F -1 U
44 unss12 I ran F U U I ran F t+ F -1 U t+ F -1 U I ran F U I ran F t+ F -1 U U t+ F -1 U
45 37 43 44 mp2an I ran F U I ran F t+ F -1 U U t+ F -1 U
46 ssun1 U t+ F -1 U U t+ F -1 U t+ F U
47 unass U t+ F -1 U t+ F U = U t+ F -1 U t+ F U
48 46 47 sseqtri U t+ F -1 U U t+ F -1 U t+ F U
49 45 48 sstri I ran F U I ran F t+ F -1 U U t+ F -1 U t+ F U
50 32 49 eqsstrdi φ F t+ F -1 U U t+ F -1 U t+ F U
51 coss1 F t+ F F t+ F t+ F t+ F
52 1 4 51 3syl φ F t+ F t+ F t+ F
53 trclfvcotrg t+ F t+ F t+ F
54 52 53 sstrdi φ F t+ F t+ F
55 imass1 F t+ F t+ F F t+ F U t+ F U
56 54 55 syl φ F t+ F U t+ F U
57 56 9 sstrdi φ F t+ F U U t+ F -1 U t+ F U
58 50 57 unssd φ F t+ F -1 U F t+ F U U t+ F -1 U t+ F U
59 10 58 unssd φ F U F t+ F -1 U F t+ F U U t+ F -1 U t+ F U
60 2 imaeq2d φ F A = F U t+ F -1 U t+ F U
61 imaundi F U t+ F -1 U t+ F U = F U F t+ F -1 U t+ F U
62 imaundi F t+ F -1 U t+ F U = F t+ F -1 U F t+ F U
63 imaco F t+ F -1 U = F t+ F -1 U
64 63 eqcomi F t+ F -1 U = F t+ F -1 U
65 imaco F t+ F U = F t+ F U
66 65 eqcomi F t+ F U = F t+ F U
67 64 66 uneq12i F t+ F -1 U F t+ F U = F t+ F -1 U F t+ F U
68 62 67 eqtri F t+ F -1 U t+ F U = F t+ F -1 U F t+ F U
69 68 uneq2i F U F t+ F -1 U t+ F U = F U F t+ F -1 U F t+ F U
70 61 69 eqtri F U t+ F -1 U t+ F U = F U F t+ F -1 U F t+ F U
71 60 70 eqtrdi φ F A = F U F t+ F -1 U F t+ F U
72 59 71 2 3sstr4d φ F A A