| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege131d.f |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 2 |
|
frege131d.a |
⊢ ( 𝜑 → 𝐴 = ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 3 |
|
frege131d.fun |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 4 |
|
trclfvlb |
⊢ ( 𝐹 ∈ V → 𝐹 ⊆ ( t+ ‘ 𝐹 ) ) |
| 5 |
|
imass1 |
⊢ ( 𝐹 ⊆ ( t+ ‘ 𝐹 ) → ( 𝐹 “ 𝑈 ) ⊆ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 6 |
1 4 5
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ 𝑈 ) ⊆ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 7 |
|
ssun2 |
⊢ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ⊆ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 8 |
|
ssun2 |
⊢ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 9 |
7 8
|
sstri |
⊢ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 10 |
6 9
|
sstrdi |
⊢ ( 𝜑 → ( 𝐹 “ 𝑈 ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 11 |
|
trclfvdecomr |
⊢ ( 𝐹 ∈ V → ( t+ ‘ 𝐹 ) = ( 𝐹 ∪ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → ( t+ ‘ 𝐹 ) = ( 𝐹 ∪ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) ) |
| 13 |
12
|
cnveqd |
⊢ ( 𝜑 → ◡ ( t+ ‘ 𝐹 ) = ◡ ( 𝐹 ∪ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) ) |
| 14 |
|
cnvun |
⊢ ◡ ( 𝐹 ∪ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) = ( ◡ 𝐹 ∪ ◡ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) |
| 15 |
|
cnvco |
⊢ ◡ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) = ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) |
| 16 |
15
|
uneq2i |
⊢ ( ◡ 𝐹 ∪ ◡ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) = ( ◡ 𝐹 ∪ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) |
| 17 |
14 16
|
eqtri |
⊢ ◡ ( 𝐹 ∪ ( ( t+ ‘ 𝐹 ) ∘ 𝐹 ) ) = ( ◡ 𝐹 ∪ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) |
| 18 |
13 17
|
eqtrdi |
⊢ ( 𝜑 → ◡ ( t+ ‘ 𝐹 ) = ( ◡ 𝐹 ∪ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) |
| 19 |
18
|
coeq2d |
⊢ ( 𝜑 → ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) = ( 𝐹 ∘ ( ◡ 𝐹 ∪ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) ) |
| 20 |
|
coundi |
⊢ ( 𝐹 ∘ ( ◡ 𝐹 ∪ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) = ( ( 𝐹 ∘ ◡ 𝐹 ) ∪ ( 𝐹 ∘ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) |
| 21 |
|
funcocnv2 |
⊢ ( Fun 𝐹 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
| 22 |
3 21
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ran 𝐹 ) ) |
| 23 |
|
coass |
⊢ ( ( 𝐹 ∘ ◡ 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) = ( 𝐹 ∘ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) |
| 24 |
23
|
eqcomi |
⊢ ( 𝐹 ∘ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) = ( ( 𝐹 ∘ ◡ 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) |
| 25 |
22
|
coeq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ◡ 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) = ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) |
| 26 |
24 25
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) = ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) |
| 27 |
22 26
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ◡ 𝐹 ) ∪ ( 𝐹 ∘ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) = ( ( I ↾ ran 𝐹 ) ∪ ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) |
| 28 |
20 27
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ◡ 𝐹 ∪ ( ◡ 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) = ( ( I ↾ ran 𝐹 ) ∪ ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) |
| 29 |
19 28
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) = ( ( I ↾ ran 𝐹 ) ∪ ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) ) |
| 30 |
29
|
imaeq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) = ( ( ( I ↾ ran 𝐹 ) ∪ ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) “ 𝑈 ) ) |
| 31 |
|
imaundir |
⊢ ( ( ( I ↾ ran 𝐹 ) ∪ ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) ) “ 𝑈 ) = ( ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ∪ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) |
| 32 |
30 31
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) = ( ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ∪ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ) |
| 33 |
|
resss |
⊢ ( I ↾ ran 𝐹 ) ⊆ I |
| 34 |
|
imass1 |
⊢ ( ( I ↾ ran 𝐹 ) ⊆ I → ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ⊆ ( I “ 𝑈 ) ) |
| 35 |
33 34
|
ax-mp |
⊢ ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ⊆ ( I “ 𝑈 ) |
| 36 |
|
imai |
⊢ ( I “ 𝑈 ) = 𝑈 |
| 37 |
35 36
|
sseqtri |
⊢ ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ⊆ 𝑈 |
| 38 |
|
imaco |
⊢ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) = ( ( I ↾ ran 𝐹 ) “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 39 |
|
imass1 |
⊢ ( ( I ↾ ran 𝐹 ) ⊆ I → ( ( I ↾ ran 𝐹 ) “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ⊆ ( I “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 40 |
33 39
|
ax-mp |
⊢ ( ( I ↾ ran 𝐹 ) “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ⊆ ( I “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 41 |
|
imai |
⊢ ( I “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) = ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) |
| 42 |
40 41
|
sseqtri |
⊢ ( ( I ↾ ran 𝐹 ) “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ⊆ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) |
| 43 |
38 42
|
eqsstri |
⊢ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ⊆ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) |
| 44 |
|
unss12 |
⊢ ( ( ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ⊆ 𝑈 ∧ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ⊆ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) → ( ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ∪ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ⊆ ( 𝑈 ∪ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 45 |
37 43 44
|
mp2an |
⊢ ( ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ∪ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ⊆ ( 𝑈 ∪ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 46 |
|
ssun1 |
⊢ ( 𝑈 ∪ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ⊆ ( ( 𝑈 ∪ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 47 |
|
unass |
⊢ ( ( 𝑈 ∪ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) = ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 48 |
46 47
|
sseqtri |
⊢ ( 𝑈 ∪ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 49 |
45 48
|
sstri |
⊢ ( ( ( I ↾ ran 𝐹 ) “ 𝑈 ) ∪ ( ( ( I ↾ ran 𝐹 ) ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 50 |
32 49
|
eqsstrdi |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 51 |
|
coss1 |
⊢ ( 𝐹 ⊆ ( t+ ‘ 𝐹 ) → ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) ⊆ ( ( t+ ‘ 𝐹 ) ∘ ( t+ ‘ 𝐹 ) ) ) |
| 52 |
1 4 51
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) ⊆ ( ( t+ ‘ 𝐹 ) ∘ ( t+ ‘ 𝐹 ) ) ) |
| 53 |
|
trclfvcotrg |
⊢ ( ( t+ ‘ 𝐹 ) ∘ ( t+ ‘ 𝐹 ) ) ⊆ ( t+ ‘ 𝐹 ) |
| 54 |
52 53
|
sstrdi |
⊢ ( 𝜑 → ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) ⊆ ( t+ ‘ 𝐹 ) ) |
| 55 |
|
imass1 |
⊢ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) ⊆ ( t+ ‘ 𝐹 ) → ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ⊆ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ⊆ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 57 |
56 9
|
sstrdi |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 58 |
50 57
|
unssd |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 59 |
10 58
|
unssd |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑈 ) ∪ ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ) ⊆ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 60 |
2
|
imaeq2d |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) = ( 𝐹 “ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) ) |
| 61 |
|
imaundi |
⊢ ( 𝐹 “ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) = ( ( 𝐹 “ 𝑈 ) ∪ ( 𝐹 “ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) |
| 62 |
|
imaundi |
⊢ ( 𝐹 “ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) = ( ( 𝐹 “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ∪ ( 𝐹 “ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) |
| 63 |
|
imaco |
⊢ ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) = ( 𝐹 “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 64 |
63
|
eqcomi |
⊢ ( 𝐹 “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) = ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) |
| 65 |
|
imaco |
⊢ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) = ( 𝐹 “ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) |
| 66 |
65
|
eqcomi |
⊢ ( 𝐹 “ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) = ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) |
| 67 |
64 66
|
uneq12i |
⊢ ( ( 𝐹 “ ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ∪ ( 𝐹 “ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) = ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) |
| 68 |
62 67
|
eqtri |
⊢ ( 𝐹 “ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) = ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) |
| 69 |
68
|
uneq2i |
⊢ ( ( 𝐹 “ 𝑈 ) ∪ ( 𝐹 “ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) = ( ( 𝐹 “ 𝑈 ) ∪ ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ) |
| 70 |
61 69
|
eqtri |
⊢ ( 𝐹 “ ( 𝑈 ∪ ( ( ◡ ( t+ ‘ 𝐹 ) “ 𝑈 ) ∪ ( ( t+ ‘ 𝐹 ) “ 𝑈 ) ) ) ) = ( ( 𝐹 “ 𝑈 ) ∪ ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ) |
| 71 |
60 70
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) = ( ( 𝐹 “ 𝑈 ) ∪ ( ( ( 𝐹 ∘ ◡ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ∪ ( ( 𝐹 ∘ ( t+ ‘ 𝐹 ) ) “ 𝑈 ) ) ) ) |
| 72 |
59 71 2
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ 𝐴 ) |