Metamath Proof Explorer


Theorem frgreu

Description: Variant of frcond2 : Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 4-Jan-2022)

Ref Expression
Hypotheses frcond1.v V=VtxG
frcond1.e E=EdgG
Assertion frgreu GFriendGraphAVCVAC∃!bAbEbCE

Proof

Step Hyp Ref Expression
1 frcond1.v V=VtxG
2 frcond1.e E=EdgG
3 1 2 frcond2 GFriendGraphAVCVAC∃!bVAbEbCE
4 3 imp GFriendGraphAVCVAC∃!bVAbEbCE
5 frgrusgr GFriendGraphGUSGraph
6 5 adantr GFriendGraphAVCVACGUSGraph
7 simpl AbEbCEAbE
8 2 1 usgrpredgv GUSGraphAbEAVbV
9 8 simprd GUSGraphAbEbV
10 6 7 9 syl2an GFriendGraphAVCVACAbEbCEbV
11 10 reueubd GFriendGraphAVCVAC∃!bVAbEbCE∃!bAbEbCE
12 4 11 mpbid GFriendGraphAVCVAC∃!bAbEbCE
13 12 ex GFriendGraphAVCVAC∃!bAbEbCE