Metamath Proof Explorer


Theorem frmdsssubm

Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis frmdmnd.m M=freeMndI
Assertion frmdsssubm IVJIWordJSubMndM

Proof

Step Hyp Ref Expression
1 frmdmnd.m M=freeMndI
2 sswrd JIWordJWordI
3 2 adantl IVJIWordJWordI
4 eqid BaseM=BaseM
5 1 4 frmdbas IVBaseM=WordI
6 5 adantr IVJIBaseM=WordI
7 3 6 sseqtrrd IVJIWordJBaseM
8 wrd0 WordJ
9 8 a1i IVJIWordJ
10 7 sselda IVJIxWordJxBaseM
11 7 sselda IVJIyWordJyBaseM
12 10 11 anim12dan IVJIxWordJyWordJxBaseMyBaseM
13 eqid +M=+M
14 1 4 13 frmdadd xBaseMyBaseMx+My=x++y
15 12 14 syl IVJIxWordJyWordJx+My=x++y
16 ccatcl xWordJyWordJx++yWordJ
17 16 adantl IVJIxWordJyWordJx++yWordJ
18 15 17 eqeltrd IVJIxWordJyWordJx+MyWordJ
19 18 ralrimivva IVJIxWordJyWordJx+MyWordJ
20 1 frmdmnd IVMMnd
21 20 adantr IVJIMMnd
22 1 frmd0 =0M
23 4 22 13 issubm MMndWordJSubMndMWordJBaseMWordJxWordJyWordJx+MyWordJ
24 21 23 syl IVJIWordJSubMndMWordJBaseMWordJxWordJyWordJx+MyWordJ
25 7 9 19 24 mpbir3and IVJIWordJSubMndM