| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmdmnd.m |
|
| 2 |
|
frmdgsum.u |
|
| 3 |
|
coeq2 |
|
| 4 |
|
co02 |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
id |
|
| 8 |
6 7
|
eqeq12d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
coeq2 |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
id |
|
| 13 |
11 12
|
eqeq12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
coeq2 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
|
id |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
coeq2 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
id |
|
| 23 |
21 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
1
|
frmd0 |
|
| 26 |
25
|
gsum0 |
|
| 27 |
26
|
a1i |
|
| 28 |
|
oveq1 |
|
| 29 |
|
simprl |
|
| 30 |
|
simprr |
|
| 31 |
30
|
s1cld |
|
| 32 |
2
|
vrmdf |
|
| 33 |
32
|
adantr |
|
| 34 |
|
ccatco |
|
| 35 |
29 31 33 34
|
syl3anc |
|
| 36 |
|
s1co |
|
| 37 |
30 33 36
|
syl2anc |
|
| 38 |
2
|
vrmdval |
|
| 39 |
38
|
adantrl |
|
| 40 |
39
|
s1eqd |
|
| 41 |
37 40
|
eqtrd |
|
| 42 |
41
|
oveq2d |
|
| 43 |
35 42
|
eqtrd |
|
| 44 |
43
|
oveq2d |
|
| 45 |
1
|
frmdmnd |
|
| 46 |
45
|
adantr |
|
| 47 |
|
wrdco |
|
| 48 |
29 33 47
|
syl2anc |
|
| 49 |
|
eqid |
|
| 50 |
1 49
|
frmdbas |
|
| 51 |
50
|
adantr |
|
| 52 |
|
wrdeq |
|
| 53 |
51 52
|
syl |
|
| 54 |
48 53
|
eleqtrrd |
|
| 55 |
31 51
|
eleqtrrd |
|
| 56 |
55
|
s1cld |
|
| 57 |
|
eqid |
|
| 58 |
49 57
|
gsumccat |
|
| 59 |
46 54 56 58
|
syl3anc |
|
| 60 |
49
|
gsumws1 |
|
| 61 |
55 60
|
syl |
|
| 62 |
61
|
oveq2d |
|
| 63 |
49
|
gsumwcl |
|
| 64 |
46 54 63
|
syl2anc |
|
| 65 |
1 49 57
|
frmdadd |
|
| 66 |
64 55 65
|
syl2anc |
|
| 67 |
62 66
|
eqtrd |
|
| 68 |
59 67
|
eqtrd |
|
| 69 |
44 68
|
eqtrd |
|
| 70 |
69
|
eqeq1d |
|
| 71 |
28 70
|
imbitrrid |
|
| 72 |
71
|
expcom |
|
| 73 |
72
|
a2d |
|
| 74 |
9 14 19 24 27 73
|
wrdind |
|
| 75 |
74
|
impcom |
|