Metamath Proof Explorer


Theorem frmdup2

Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses frmdup.m M=freeMndI
frmdup.b B=BaseG
frmdup.e E=xWordIGAx
frmdup.g φGMnd
frmdup.i φIX
frmdup.a φA:IB
frmdup2.u U=varFMndI
frmdup2.y φYI
Assertion frmdup2 φEUY=AY

Proof

Step Hyp Ref Expression
1 frmdup.m M=freeMndI
2 frmdup.b B=BaseG
3 frmdup.e E=xWordIGAx
4 frmdup.g φGMnd
5 frmdup.i φIX
6 frmdup.a φA:IB
7 frmdup2.u U=varFMndI
8 frmdup2.y φYI
9 7 vrmdval IXYIUY=⟨“Y”⟩
10 5 8 9 syl2anc φUY=⟨“Y”⟩
11 10 fveq2d φEUY=E⟨“Y”⟩
12 8 s1cld φ⟨“Y”⟩WordI
13 coeq2 x=⟨“Y”⟩Ax=A⟨“Y”⟩
14 13 oveq2d x=⟨“Y”⟩GAx=GA⟨“Y”⟩
15 ovex GAxV
16 14 3 15 fvmpt3i ⟨“Y”⟩WordIE⟨“Y”⟩=GA⟨“Y”⟩
17 12 16 syl φE⟨“Y”⟩=GA⟨“Y”⟩
18 s1co YIA:IBA⟨“Y”⟩=⟨“AY”⟩
19 8 6 18 syl2anc φA⟨“Y”⟩=⟨“AY”⟩
20 19 oveq2d φGA⟨“Y”⟩=G⟨“AY”⟩
21 6 8 ffvelcdmd φAYB
22 2 gsumws1 AYBG⟨“AY”⟩=AY
23 21 22 syl φG⟨“AY”⟩=AY
24 17 20 23 3eqtrd φE⟨“Y”⟩=AY
25 11 24 eqtrd φEUY=AY