Metamath Proof Explorer


Theorem frrlem11

Description: Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom F = A . To do this, we set up a function C that supposedly contains an element of A that is not in dom F and we show that the element must be in dom F . Our choice of what to restrict F to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of C . (Contributed by Scott Fenton, 7-Dec-2022)

Ref Expression
Hypotheses frrlem11.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem11.2 F = frecs R A G
frrlem11.3 φ g B h B x g u x h v u = v
frrlem11.4 C = F S z z G F Pred R A z
Assertion frrlem11 φ z A dom F C Fn S dom F z

Proof

Step Hyp Ref Expression
1 frrlem11.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem11.2 F = frecs R A G
3 frrlem11.3 φ g B h B x g u x h v u = v
4 frrlem11.4 C = F S z z G F Pred R A z
5 1 2 3 frrlem9 φ Fun F
6 5 funresd φ Fun F S
7 dmres dom F S = S dom F
8 df-fn F S Fn S dom F Fun F S dom F S = S dom F
9 7 8 mpbiran2 F S Fn S dom F Fun F S
10 6 9 sylibr φ F S Fn S dom F
11 vex z V
12 ovex z G F Pred R A z V
13 11 12 fnsn z z G F Pred R A z Fn z
14 10 13 jctir φ F S Fn S dom F z z G F Pred R A z Fn z
15 eldifn z A dom F ¬ z dom F
16 elinel2 z S dom F z dom F
17 15 16 nsyl z A dom F ¬ z S dom F
18 disjsn S dom F z = ¬ z S dom F
19 17 18 sylibr z A dom F S dom F z =
20 fnun F S Fn S dom F z z G F Pred R A z Fn z S dom F z = F S z z G F Pred R A z Fn S dom F z
21 14 19 20 syl2an φ z A dom F F S z z G F Pred R A z Fn S dom F z
22 4 fneq1i C Fn S dom F z F S z z G F Pred R A z Fn S dom F z
23 21 22 sylibr φ z A dom F C Fn S dom F z