Metamath Proof Explorer


Theorem frrlem6

Description: Lemma for well-founded recursion. The well-founded recursion generator is a relation. (Contributed by Scott Fenton, 27-Aug-2022)

Ref Expression
Hypotheses frrlem5.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
frrlem5.2 F=frecsRAG
Assertion frrlem6 RelF

Proof

Step Hyp Ref Expression
1 frrlem5.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 frrlem5.2 F=frecsRAG
3 1 2 frrlem5 F=B
4 3 releqi RelFRelB
5 reluni RelBgBRelg
6 4 5 bitri RelFgBRelg
7 1 frrlem2 gBFung
8 funrel FungRelg
9 7 8 syl gBRelg
10 6 9 mprgbir RelF