Metamath Proof Explorer


Theorem fseq1m1p1

Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Hypothesis fseq1m1p1.1 H=NB
Assertion fseq1m1p1 NF:1N1ABAG=FHG:1NAGN=BF=G1N1

Proof

Step Hyp Ref Expression
1 fseq1m1p1.1 H=NB
2 nnm1nn0 NN10
3 eqid N-1+1B=N-1+1B
4 3 fseq1p1m1 N10F:1N1ABAG=FN-1+1BG:1N-1+1AGN-1+1=BF=G1N1
5 2 4 syl NF:1N1ABAG=FN-1+1BG:1N-1+1AGN-1+1=BF=G1N1
6 nncn NN
7 ax-1cn 1
8 npcan N1N-1+1=N
9 6 7 8 sylancl NN-1+1=N
10 9 opeq1d NN-1+1B=NB
11 10 sneqd NN-1+1B=NB
12 11 1 eqtr4di NN-1+1B=H
13 12 uneq2d NFN-1+1B=FH
14 13 eqeq2d NG=FN-1+1BG=FH
15 14 3anbi3d NF:1N1ABAG=FN-1+1BF:1N1ABAG=FH
16 9 oveq2d N1N-1+1=1N
17 16 feq2d NG:1N-1+1AG:1NA
18 9 fveqeq2d NGN-1+1=BGN=B
19 17 18 3anbi12d NG:1N-1+1AGN-1+1=BF=G1N1G:1NAGN=BF=G1N1
20 5 15 19 3bitr3d NF:1N1ABAG=FHG:1NAGN=BF=G1N1