Metamath Proof Explorer


Theorem fseqen

Description: A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion fseqen A×AAAnωAnω×A

Proof

Step Hyp Ref Expression
1 bren A×AAff:A×A1-1 ontoA
2 n0 AbbA
3 exdistrv fbf:A×A1-1 ontoAbAff:A×A1-1 ontoAbbA
4 omex ωV
5 simpl f:A×A1-1 ontoAbAf:A×A1-1 ontoA
6 f1ofo f:A×A1-1 ontoAf:A×AontoA
7 forn f:A×AontoAranf=A
8 5 6 7 3syl f:A×A1-1 ontoAbAranf=A
9 vex fV
10 9 rnex ranfV
11 8 10 eqeltrrdi f:A×A1-1 ontoAbAAV
12 xpexg ωVAVω×AV
13 4 11 12 sylancr f:A×A1-1 ontoAbAω×AV
14 simpr f:A×A1-1 ontoAbAbA
15 eqid seqωkV,gVyAsuckgykfykb=seqωkV,gVyAsuckgykfykb
16 eqid xnωAndomxseqωkV,gVyAsuckgykfykbdomxx=xnωAndomxseqωkV,gVyAsuckgykfykbdomxx
17 11 14 5 15 16 fseqenlem2 f:A×A1-1 ontoAbAxnωAndomxseqωkV,gVyAsuckgykfykbdomxx:nωAn1-1ω×A
18 f1domg ω×AVxnωAndomxseqωkV,gVyAsuckgykfykbdomxx:nωAn1-1ω×AnωAnω×A
19 13 17 18 sylc f:A×A1-1 ontoAbAnωAnω×A
20 fseqdom AVω×AnωAn
21 11 20 syl f:A×A1-1 ontoAbAω×AnωAn
22 sbth nωAnω×Aω×AnωAnnωAnω×A
23 19 21 22 syl2anc f:A×A1-1 ontoAbAnωAnω×A
24 23 exlimivv fbf:A×A1-1 ontoAbAnωAnω×A
25 3 24 sylbir ff:A×A1-1 ontoAbbAnωAnω×A
26 1 2 25 syl2anb A×AAAnωAnω×A