Metamath Proof Explorer


Theorem fsetsnprcnex

Description: The class of all functions from a (proper) singleton into a proper class B is not a set. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsnprcnex SVBVf|f:SBV

Proof

Step Hyp Ref Expression
1 eqid y|bBy=Sb=y|bBy=Sb
2 eqid xBSx=xBSx
3 1 2 fsetsnf1o SVxBSx:B1-1 ontoy|bBy=Sb
4 f1ovv xBSx:B1-1 ontoy|bBy=SbBVy|bBy=SbV
5 3 4 syl SVBVy|bBy=SbV
6 5 notbid SV¬BV¬y|bBy=SbV
7 df-nel BV¬BV
8 df-nel y|bBy=SbV¬y|bBy=SbV
9 6 7 8 3bitr4g SVBVy|bBy=SbV
10 9 biimpa SVBVy|bBy=SbV
11 fsetabsnop SVf|f:SB=y|bBy=Sb
12 11 adantr SVBVf|f:SB=y|bBy=Sb
13 eqidd SVBVV=V
14 12 13 neleq12d SVBVf|f:SBVy|bBy=SbV
15 10 14 mpbird SVBVf|f:SBV