Metamath Proof Explorer


Theorem fsum2d

Description: Write a double sum as a sum over a two-dimensional region. Note that B ( j ) is a function of j . (Contributed by Mario Carneiro, 27-Apr-2014)

Ref Expression
Hypotheses fsum2d.1 z=jkD=C
fsum2d.2 φAFin
fsum2d.3 φjABFin
fsum2d.4 φjAkBC
Assertion fsum2d φjAkBC=zjAj×BD

Proof

Step Hyp Ref Expression
1 fsum2d.1 z=jkD=C
2 fsum2d.2 φAFin
3 fsum2d.3 φjABFin
4 fsum2d.4 φjAkBC
5 ssid AA
6 sseq1 w=wAA
7 sumeq1 w=jwkBC=jkBC
8 iuneq1 w=jwj×B=jj×B
9 8 sumeq1d w=zjwj×BD=zjj×BD
10 7 9 eqeq12d w=jwkBC=zjwj×BDjkBC=zjj×BD
11 6 10 imbi12d w=wAjwkBC=zjwj×BDAjkBC=zjj×BD
12 11 imbi2d w=φwAjwkBC=zjwj×BDφAjkBC=zjj×BD
13 sseq1 w=xwAxA
14 sumeq1 w=xjwkBC=jxkBC
15 iuneq1 w=xjwj×B=jxj×B
16 15 sumeq1d w=xzjwj×BD=zjxj×BD
17 14 16 eqeq12d w=xjwkBC=zjwj×BDjxkBC=zjxj×BD
18 13 17 imbi12d w=xwAjwkBC=zjwj×BDxAjxkBC=zjxj×BD
19 18 imbi2d w=xφwAjwkBC=zjwj×BDφxAjxkBC=zjxj×BD
20 sseq1 w=xywAxyA
21 sumeq1 w=xyjwkBC=jxykBC
22 iuneq1 w=xyjwj×B=jxyj×B
23 22 sumeq1d w=xyzjwj×BD=zjxyj×BD
24 21 23 eqeq12d w=xyjwkBC=zjwj×BDjxykBC=zjxyj×BD
25 20 24 imbi12d w=xywAjwkBC=zjwj×BDxyAjxykBC=zjxyj×BD
26 25 imbi2d w=xyφwAjwkBC=zjwj×BDφxyAjxykBC=zjxyj×BD
27 sseq1 w=AwAAA
28 sumeq1 w=AjwkBC=jAkBC
29 iuneq1 w=Ajwj×B=jAj×B
30 29 sumeq1d w=Azjwj×BD=zjAj×BD
31 28 30 eqeq12d w=AjwkBC=zjwj×BDjAkBC=zjAj×BD
32 27 31 imbi12d w=AwAjwkBC=zjwj×BDAAjAkBC=zjAj×BD
33 32 imbi2d w=AφwAjwkBC=zjwj×BDφAAjAkBC=zjAj×BD
34 sum0 zD=0
35 0iun jj×B=
36 35 sumeq1i zjj×BD=zD
37 sum0 jkBC=0
38 34 36 37 3eqtr4ri jkBC=zjj×BD
39 38 2a1i φAjkBC=zjj×BD
40 ssun1 xxy
41 sstr xxyxyAxA
42 40 41 mpan xyAxA
43 42 imim1i xAjxkBC=zjxj×BDxyAjxkBC=zjxj×BD
44 simpll φ¬yxxyAφ
45 44 2 syl φ¬yxxyAAFin
46 44 3 sylan φ¬yxxyAjABFin
47 44 4 sylan φ¬yxxyAjAkBC
48 simplr φ¬yxxyA¬yx
49 simpr φ¬yxxyAxyA
50 biid jxkBC=zjxj×BDjxkBC=zjxj×BD
51 1 45 46 47 48 49 50 fsum2dlem φ¬yxxyAjxkBC=zjxj×BDjxykBC=zjxyj×BD
52 51 exp31 φ¬yxxyAjxkBC=zjxj×BDjxykBC=zjxyj×BD
53 52 a2d φ¬yxxyAjxkBC=zjxj×BDxyAjxykBC=zjxyj×BD
54 43 53 syl5 φ¬yxxAjxkBC=zjxj×BDxyAjxykBC=zjxyj×BD
55 54 expcom ¬yxφxAjxkBC=zjxj×BDxyAjxykBC=zjxyj×BD
56 55 a2d ¬yxφxAjxkBC=zjxj×BDφxyAjxykBC=zjxyj×BD
57 56 adantl xFin¬yxφxAjxkBC=zjxj×BDφxyAjxykBC=zjxyj×BD
58 12 19 26 33 39 57 findcard2s AFinφAAjAkBC=zjAj×BD
59 2 58 mpcom φAAjAkBC=zjAj×BD
60 5 59 mpi φjAkBC=zjAj×BD