Description: Write a double sum as a sum over a two-dimensional region. Note that B ( j ) is a function of j . (Contributed by Mario Carneiro, 27-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsum2d.1 | |
|
fsum2d.2 | |
||
fsum2d.3 | |
||
fsum2d.4 | |
||
Assertion | fsum2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsum2d.1 | |
|
2 | fsum2d.2 | |
|
3 | fsum2d.3 | |
|
4 | fsum2d.4 | |
|
5 | ssid | |
|
6 | sseq1 | |
|
7 | sumeq1 | |
|
8 | iuneq1 | |
|
9 | 8 | sumeq1d | |
10 | 7 9 | eqeq12d | |
11 | 6 10 | imbi12d | |
12 | 11 | imbi2d | |
13 | sseq1 | |
|
14 | sumeq1 | |
|
15 | iuneq1 | |
|
16 | 15 | sumeq1d | |
17 | 14 16 | eqeq12d | |
18 | 13 17 | imbi12d | |
19 | 18 | imbi2d | |
20 | sseq1 | |
|
21 | sumeq1 | |
|
22 | iuneq1 | |
|
23 | 22 | sumeq1d | |
24 | 21 23 | eqeq12d | |
25 | 20 24 | imbi12d | |
26 | 25 | imbi2d | |
27 | sseq1 | |
|
28 | sumeq1 | |
|
29 | iuneq1 | |
|
30 | 29 | sumeq1d | |
31 | 28 30 | eqeq12d | |
32 | 27 31 | imbi12d | |
33 | 32 | imbi2d | |
34 | sum0 | |
|
35 | 0iun | |
|
36 | 35 | sumeq1i | |
37 | sum0 | |
|
38 | 34 36 37 | 3eqtr4ri | |
39 | 38 | 2a1i | |
40 | ssun1 | |
|
41 | sstr | |
|
42 | 40 41 | mpan | |
43 | 42 | imim1i | |
44 | simpll | |
|
45 | 44 2 | syl | |
46 | 44 3 | sylan | |
47 | 44 4 | sylan | |
48 | simplr | |
|
49 | simpr | |
|
50 | biid | |
|
51 | 1 45 46 47 48 49 50 | fsum2dlem | |
52 | 51 | exp31 | |
53 | 52 | a2d | |
54 | 43 53 | syl5 | |
55 | 54 | expcom | |
56 | 55 | a2d | |
57 | 56 | adantl | |
58 | 12 19 26 33 39 57 | findcard2s | |
59 | 2 58 | mpcom | |
60 | 5 59 | mpi | |