Metamath Proof Explorer


Theorem fsumge0

Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumge0.1 φAFin
fsumge0.2 φkAB
fsumge0.3 φkA0B
Assertion fsumge0 φ0kAB

Proof

Step Hyp Ref Expression
1 fsumge0.1 φAFin
2 fsumge0.2 φkAB
3 fsumge0.3 φkA0B
4 rge0ssre 0+∞
5 ax-resscn
6 4 5 sstri 0+∞
7 6 a1i φ0+∞
8 ge0addcl x0+∞y0+∞x+y0+∞
9 8 adantl φx0+∞y0+∞x+y0+∞
10 elrege0 B0+∞B0B
11 2 3 10 sylanbrc φkAB0+∞
12 0e0icopnf 00+∞
13 12 a1i φ00+∞
14 7 9 1 11 13 fsumcllem φkAB0+∞
15 elrege0 kAB0+∞kAB0kAB
16 15 simprbi kAB0+∞0kAB
17 14 16 syl φ0kAB