| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsump1i.1 |  | 
						
							| 2 |  | fsump1i.2 |  | 
						
							| 3 |  | fsump1i.3 |  | 
						
							| 4 |  | fsump1i.4 |  | 
						
							| 5 |  | fsump1i.5 |  | 
						
							| 6 |  | fsump1i.6 |  | 
						
							| 7 | 5 | simpld |  | 
						
							| 8 | 7 1 | eleqtrdi |  | 
						
							| 9 |  | peano2uz |  | 
						
							| 10 | 9 1 | eleqtrrdi |  | 
						
							| 11 | 8 10 | syl |  | 
						
							| 12 | 2 11 | eqeltrid |  | 
						
							| 13 | 2 | oveq2i |  | 
						
							| 14 | 13 | sumeq1i |  | 
						
							| 15 |  | elfzuz |  | 
						
							| 16 | 15 1 | eleqtrrdi |  | 
						
							| 17 | 16 4 | sylan2 |  | 
						
							| 18 | 2 | eqeq2i |  | 
						
							| 19 | 18 3 | sylbir |  | 
						
							| 20 | 8 17 19 | fsump1 |  | 
						
							| 21 | 14 20 | eqtrid |  | 
						
							| 22 | 5 | simprd |  | 
						
							| 23 | 22 | oveq1d |  | 
						
							| 24 | 21 23 6 | 3eqtrd |  | 
						
							| 25 | 12 24 | jca |  |