Metamath Proof Explorer


Theorem fsump1i

Description: Optimized version of fsump1 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsump1i.1 Z=M
fsump1i.2 N=K+1
fsump1i.3 k=NA=B
fsump1i.4 φkZA
fsump1i.5 φKZk=MKA=S
fsump1i.6 φS+B=T
Assertion fsump1i φNZk=MNA=T

Proof

Step Hyp Ref Expression
1 fsump1i.1 Z=M
2 fsump1i.2 N=K+1
3 fsump1i.3 k=NA=B
4 fsump1i.4 φkZA
5 fsump1i.5 φKZk=MKA=S
6 fsump1i.6 φS+B=T
7 5 simpld φKZ
8 7 1 eleqtrdi φKM
9 peano2uz KMK+1M
10 9 1 eleqtrrdi KMK+1Z
11 8 10 syl φK+1Z
12 2 11 eqeltrid φNZ
13 2 oveq2i MN=MK+1
14 13 sumeq1i k=MNA=k=MK+1A
15 elfzuz kMK+1kM
16 15 1 eleqtrrdi kMK+1kZ
17 16 4 sylan2 φkMK+1A
18 2 eqeq2i k=Nk=K+1
19 18 3 sylbir k=K+1A=B
20 8 17 19 fsump1 φk=MK+1A=k=MKA+B
21 14 20 eqtrid φk=MNA=k=MKA+B
22 5 simprd φk=MKA=S
23 22 oveq1d φk=MKA+B=S+B
24 21 23 6 3eqtrd φk=MNA=T
25 12 24 jca φNZk=MNA=T