Metamath Proof Explorer


Theorem fsumsers

Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsumsers.1 φkMFk=ifkAB0
fsumsers.2 φNM
fsumsers.3 φkAB
fsumsers.4 φAMN
Assertion fsumsers φkAB=seqM+FN

Proof

Step Hyp Ref Expression
1 fsumsers.1 φkMFk=ifkAB0
2 fsumsers.2 φNM
3 fsumsers.3 φkAB
4 fsumsers.4 φAMN
5 eqid M=M
6 eluzel2 NMM
7 2 6 syl φM
8 fzssuz MNM
9 4 8 sstrdi φAM
10 5 7 9 1 3 zsum φkAB=seqM+F
11 fclim :dom
12 ffun :domFun
13 11 12 ax-mp Fun
14 1 2 3 4 fsumcvg2 φseqM+FseqM+FN
15 funbrfv FunseqM+FseqM+FNseqM+F=seqM+FN
16 13 14 15 mpsyl φseqM+F=seqM+FN
17 10 16 eqtrd φkAB=seqM+FN