Metamath Proof Explorer


Theorem fsumxp

Description: Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumxp.1 z=jkD=C
fsumxp.2 φAFin
fsumxp.3 φBFin
fsumxp.4 φjAkBC
Assertion fsumxp φjAkBC=zA×BD

Proof

Step Hyp Ref Expression
1 fsumxp.1 z=jkD=C
2 fsumxp.2 φAFin
3 fsumxp.3 φBFin
4 fsumxp.4 φjAkBC
5 3 adantr φjABFin
6 1 2 5 4 fsum2d φjAkBC=zjAj×BD
7 iunxpconst jAj×B=A×B
8 7 sumeq1i zjAj×BD=zA×BD
9 6 8 eqtrdi φjAkBC=zA×BD