Metamath Proof Explorer


Theorem fucid

Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucid.q Q=CFuncCatD
fucid.i I=IdQ
fucid.1 1˙=IdD
fucid.f φFCFuncD
Assertion fucid φIF=1˙1stF

Proof

Step Hyp Ref Expression
1 fucid.q Q=CFuncCatD
2 fucid.i I=IdQ
3 fucid.1 1˙=IdD
4 fucid.f φFCFuncD
5 funcrcl FCFuncDCCatDCat
6 4 5 syl φCCatDCat
7 6 simpld φCCat
8 6 simprd φDCat
9 1 7 8 3 fuccatid φQCatIdQ=fCFuncD1˙1stf
10 9 simprd φIdQ=fCFuncD1˙1stf
11 2 10 eqtrid φI=fCFuncD1˙1stf
12 simpr φf=Ff=F
13 12 fveq2d φf=F1stf=1stF
14 13 coeq2d φf=F1˙1stf=1˙1stF
15 3 fvexi 1˙V
16 fvex 1stFV
17 15 16 coex 1˙1stFV
18 17 a1i φ1˙1stFV
19 11 14 4 18 fvmptd φIF=1˙1stF