Metamath Proof Explorer


Theorem funcoppc5

Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o O = oppCat C
funcoppc2.p P = oppCat D
funcoppc2.c φ C V
funcoppc2.d φ D W
funcoppc5.f No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |-
Assertion funcoppc5 φ F C Func D

Proof

Step Hyp Ref Expression
1 funcoppc2.o O = oppCat C
2 funcoppc2.p P = oppCat D
3 funcoppc2.c φ C V
4 funcoppc2.d φ D W
5 funcoppc5.f Could not format ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |-
6 relfunc Rel O Func P
7 eqid Could not format ( oppFunc ` F ) = ( oppFunc ` F ) : No typesetting found for |- ( oppFunc ` F ) = ( oppFunc ` F ) with typecode |-
8 5 6 7 oppfrcl φ F V × V
9 1st2nd2 F V × V F = 1 st F 2 nd F
10 8 9 syl φ F = 1 st F 2 nd F
11 10 fveq2d Could not format ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) with typecode |-
12 df-ov Could not format ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) : No typesetting found for |- ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) with typecode |-
13 11 12 eqtr4di Could not format ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) with typecode |-
14 13 5 eqeltrrd Could not format ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) with typecode |-
15 1 2 3 4 14 funcoppc4 φ 1 st F C Func D 2 nd F
16 df-br 1 st F C Func D 2 nd F 1 st F 2 nd F C Func D
17 15 16 sylib φ 1 st F 2 nd F C Func D
18 10 17 eqeltrd φ F C Func D