Metamath Proof Explorer


Theorem funeldmdif

Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023)

Ref Expression
Assertion funeldmdif FunABACdomAdomBxAB1stx=C

Proof

Step Hyp Ref Expression
1 funrel FunARelA
2 releldmdifi RelABACdomAdomBxAB1stx=C
3 1 2 sylan FunABACdomAdomBxAB1stx=C
4 eldif xABxA¬xB
5 1stdm RelAxA1stxdomA
6 5 ex RelAxA1stxdomA
7 1 6 syl FunAxA1stxdomA
8 7 adantr FunABAxA1stxdomA
9 8 com12 xAFunABA1stxdomA
10 9 adantr xA¬xBFunABA1stxdomA
11 10 impcom FunABAxA¬xB1stxdomA
12 funelss FunABAxA1stxdomBxB
13 12 3expa FunABAxA1stxdomBxB
14 13 con3d FunABAxA¬xB¬1stxdomB
15 14 impr FunABAxA¬xB¬1stxdomB
16 11 15 eldifd FunABAxA¬xB1stxdomAdomB
17 16 3adant3 FunABAxA¬xB1stx=C1stxdomAdomB
18 eleq1 1stx=C1stxdomAdomBCdomAdomB
19 18 3ad2ant3 FunABAxA¬xB1stx=C1stxdomAdomBCdomAdomB
20 17 19 mpbid FunABAxA¬xB1stx=CCdomAdomB
21 20 3exp FunABAxA¬xB1stx=CCdomAdomB
22 4 21 biimtrid FunABAxAB1stx=CCdomAdomB
23 22 rexlimdv FunABAxAB1stx=CCdomAdomB
24 3 23 impbid FunABACdomAdomBxAB1stx=C