Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | funeldmdif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel | |
|
2 | releldmdifi | |
|
3 | 1 2 | sylan | |
4 | eldif | |
|
5 | 1stdm | |
|
6 | 5 | ex | |
7 | 1 6 | syl | |
8 | 7 | adantr | |
9 | 8 | com12 | |
10 | 9 | adantr | |
11 | 10 | impcom | |
12 | funelss | |
|
13 | 12 | 3expa | |
14 | 13 | con3d | |
15 | 14 | impr | |
16 | 11 15 | eldifd | |
17 | 16 | 3adant3 | |
18 | eleq1 | |
|
19 | 18 | 3ad2ant3 | |
20 | 17 19 | mpbid | |
21 | 20 | 3exp | |
22 | 4 21 | biimtrid | |
23 | 22 | rexlimdv | |
24 | 3 23 | impbid | |