Metamath Proof Explorer


Theorem funfvima

Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003)

Ref Expression
Assertion funfvima FunFBdomFBAFBFA

Proof

Step Hyp Ref Expression
1 dmres domFA=AdomF
2 1 elin2 BdomFABABdomF
3 funres FunFFunFA
4 fvelrn FunFABdomFAFABranFA
5 3 4 sylan FunFBdomFAFABranFA
6 df-ima FA=ranFA
7 6 eleq2i FBFAFBranFA
8 fvres BAFAB=FB
9 8 eleq1d BAFABranFAFBranFA
10 7 9 bitr4id BAFBFAFABranFA
11 5 10 syl5ibrcom FunFBdomFABAFBFA
12 11 ex FunFBdomFABAFBFA
13 2 12 biimtrrid FunFBABdomFBAFBFA
14 13 expd FunFBABdomFBAFBFA
15 14 com12 BAFunFBdomFBAFBFA
16 15 impd BAFunFBdomFBAFBFA
17 16 pm2.43b FunFBdomFBAFBFA