Metamath Proof Explorer


Theorem funfvima3

Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004)

Ref Expression
Assertion funfvima3 FunFFGAdomFFAGA

Proof

Step Hyp Ref Expression
1 ssel FGAFAFAFAG
2 funfvop FunFAdomFAFAF
3 1 2 impel FGFunFAdomFAFAG
4 sneq x=Ax=A
5 4 imaeq2d x=AGx=GA
6 5 eleq2d x=AFAGxFAGA
7 opeq1 x=AxFA=AFA
8 7 eleq1d x=AxFAGAFAG
9 vex xV
10 fvex FAV
11 9 10 elimasn FAGxxFAG
12 6 8 11 vtoclbg AdomFFAGAAFAG
13 12 ad2antll FGFunFAdomFFAGAAFAG
14 3 13 mpbird FGFunFAdomFFAGA
15 14 exp32 FGFunFAdomFFAGA
16 15 impcom FunFFGAdomFFAGA