Metamath Proof Explorer


Theorem funimass4

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion funimass4 FunFAdomFFABxAFxB

Proof

Step Hyp Ref Expression
1 dfss2 FAByyFAyB
2 vex yV
3 2 elima yFAxAxFy
4 eqcom y=FxFx=y
5 ssel AdomFxAxdomF
6 funbrfvb FunFxdomFFx=yxFy
7 6 ex FunFxdomFFx=yxFy
8 5 7 syl9 AdomFFunFxAFx=yxFy
9 8 imp31 AdomFFunFxAFx=yxFy
10 4 9 bitrid AdomFFunFxAy=FxxFy
11 10 rexbidva AdomFFunFxAy=FxxAxFy
12 3 11 bitr4id AdomFFunFyFAxAy=Fx
13 12 imbi1d AdomFFunFyFAyBxAy=FxyB
14 r19.23v xAy=FxyBxAy=FxyB
15 13 14 bitr4di AdomFFunFyFAyBxAy=FxyB
16 15 albidv AdomFFunFyyFAyByxAy=FxyB
17 ralcom4 xAyy=FxyByxAy=FxyB
18 fvex FxV
19 eleq1 y=FxyBFxB
20 18 19 ceqsalv yy=FxyBFxB
21 20 ralbii xAyy=FxyBxAFxB
22 17 21 bitr3i yxAy=FxyBxAFxB
23 16 22 bitrdi AdomFFunFyyFAyBxAFxB
24 1 23 bitrid AdomFFunFFABxAFxB
25 24 ancoms FunFAdomFFABxAFxB