Metamath Proof Explorer


Theorem funtpg

Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion funtpg XUYVZWAFBGCHXYXZYZFunXAYBZC

Proof

Step Hyp Ref Expression
1 3simpa XUYVZWXUYV
2 3simpa AFBGCHAFBG
3 simp1 XYXZYZXY
4 funprg XUYVAFBGXYFunXAYB
5 1 2 3 4 syl3an XUYVZWAFBGCHXYXZYZFunXAYB
6 simp3 XUYVZWZW
7 simp3 AFBGCHCH
8 funsng ZWCHFunZC
9 6 7 8 syl2an XUYVZWAFBGCHFunZC
10 9 3adant3 XUYVZWAFBGCHXYXZYZFunZC
11 dmpropg AFBGdomXAYB=XY
12 dmsnopg CHdomZC=Z
13 11 12 ineqan12d AFBGCHdomXAYBdomZC=XYZ
14 13 3impa AFBGCHdomXAYBdomZC=XYZ
15 disjprsn XZYZXYZ=
16 15 3adant1 XYXZYZXYZ=
17 14 16 sylan9eq AFBGCHXYXZYZdomXAYBdomZC=
18 17 3adant1 XUYVZWAFBGCHXYXZYZdomXAYBdomZC=
19 funun FunXAYBFunZCdomXAYBdomZC=FunXAYBZC
20 5 10 18 19 syl21anc XUYVZWAFBGCHXYXZYZFunXAYBZC
21 df-tp XAYBZC=XAYBZC
22 21 funeqi FunXAYBZCFunXAYBZC
23 20 22 sylibr XUYVZWAFBGCHXYXZYZFunXAYBZC