Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017) (Proof shortened by JJ, 14-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | funtpg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa | |
|
2 | 3simpa | |
|
3 | simp1 | |
|
4 | funprg | |
|
5 | 1 2 3 4 | syl3an | |
6 | simp3 | |
|
7 | simp3 | |
|
8 | funsng | |
|
9 | 6 7 8 | syl2an | |
10 | 9 | 3adant3 | |
11 | dmpropg | |
|
12 | dmsnopg | |
|
13 | 11 12 | ineqan12d | |
14 | 13 | 3impa | |
15 | disjprsn | |
|
16 | 15 | 3adant1 | |
17 | 14 16 | sylan9eq | |
18 | 17 | 3adant1 | |
19 | funun | |
|
20 | 5 10 18 19 | syl21anc | |
21 | df-tp | |
|
22 | 21 | funeqi | |
23 | 20 22 | sylibr | |