Metamath Proof Explorer


Theorem fusgreg2wsp

Description: In a finite simple graph, the set of all paths of length 2 is the union of all the paths of length 2 over the vertices which are in the middle of such a path. (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 18-May-2021) (Proof shortened by AV, 10-Jan-2022)

Ref Expression
Hypotheses frgrhash2wsp.v V=VtxG
fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
Assertion fusgreg2wsp GFinUSGraph2WSPathsNG=xVMx

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v V=VtxG
2 fusgreg2wsp.m M=aVw2WSPathsNG|w1=a
3 wspthsswwlkn 2WSPathsNG2WWalksNG
4 3 sseli p2WSPathsNGp2WWalksNG
5 1 midwwlks2s3 p2WWalksNGxVp1=x
6 4 5 syl p2WSPathsNGxVp1=x
7 6 a1i GFinUSGraphp2WSPathsNGxVp1=x
8 7 pm4.71rd GFinUSGraphp2WSPathsNGxVp1=xp2WSPathsNG
9 ancom p2WSPathsNGp1=xp1=xp2WSPathsNG
10 9 rexbii xVp2WSPathsNGp1=xxVp1=xp2WSPathsNG
11 r19.41v xVp1=xp2WSPathsNGxVp1=xp2WSPathsNG
12 10 11 bitr2i xVp1=xp2WSPathsNGxVp2WSPathsNGp1=x
13 12 a1i GFinUSGraphxVp1=xp2WSPathsNGxVp2WSPathsNGp1=x
14 1 2 fusgreg2wsplem xVpMxp2WSPathsNGp1=x
15 14 bicomd xVp2WSPathsNGp1=xpMx
16 15 adantl GFinUSGraphxVp2WSPathsNGp1=xpMx
17 16 rexbidva GFinUSGraphxVp2WSPathsNGp1=xxVpMx
18 8 13 17 3bitrd GFinUSGraphp2WSPathsNGxVpMx
19 eliun pxVMxxVpMx
20 18 19 bitr4di GFinUSGraphp2WSPathsNGpxVMx
21 20 eqrdv GFinUSGraph2WSPathsNG=xVMx