Metamath Proof Explorer


Theorem fusgrfisstep

Description: Induction step in fusgrfis : In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)

Ref Expression
Assertion fusgrfisstep V X E Y V E FinUSGraph N V I p Edg V E | N p Fin E Fin

Proof

Step Hyp Ref Expression
1 residfi I p Edg V E | N p Fin p Edg V E | N p Fin
2 fusgrusgr V E FinUSGraph V E USGraph
3 eqid iEdg V E = iEdg V E
4 eqid Edg V E = Edg V E
5 3 4 usgredgffibi V E USGraph Edg V E Fin iEdg V E Fin
6 2 5 syl V E FinUSGraph Edg V E Fin iEdg V E Fin
7 6 3ad2ant2 V X E Y V E FinUSGraph N V Edg V E Fin iEdg V E Fin
8 simp2 V X E Y V E FinUSGraph N V V E FinUSGraph
9 opvtxfv V X E Y Vtx V E = V
10 9 eqcomd V X E Y V = Vtx V E
11 10 eleq2d V X E Y N V N Vtx V E
12 11 biimpa V X E Y N V N Vtx V E
13 eqid Vtx V E = Vtx V E
14 eqid p Edg V E | N p = p Edg V E | N p
15 13 4 14 usgrfilem V E FinUSGraph N Vtx V E Edg V E Fin p Edg V E | N p Fin
16 8 12 15 3imp3i2an V X E Y V E FinUSGraph N V Edg V E Fin p Edg V E | N p Fin
17 opiedgfv V X E Y iEdg V E = E
18 17 eleq1d V X E Y iEdg V E Fin E Fin
19 18 3ad2ant1 V X E Y V E FinUSGraph N V iEdg V E Fin E Fin
20 7 16 19 3bitr3rd V X E Y V E FinUSGraph N V E Fin p Edg V E | N p Fin
21 20 biimprd V X E Y V E FinUSGraph N V p Edg V E | N p Fin E Fin
22 1 21 syl5bi V X E Y V E FinUSGraph N V I p Edg V E | N p Fin E Fin