Metamath Proof Explorer


Theorem fvelima2

Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion fvelima2 FFnABFCxACFx=B

Proof

Step Hyp Ref Expression
1 elimag BFCBFCxCxFB
2 1 ibi BFCxCxFB
3 df-rex xCxFBxxCxFB
4 2 3 sylib BFCxxCxFB
5 fnbr FFnAxFBxA
6 5 adantrl FFnAxCxFBxA
7 simprl FFnAxCxFBxC
8 6 7 elind FFnAxCxFBxAC
9 fnfun FFnAFunF
10 funbrfv FunFxFBFx=B
11 10 imp FunFxFBFx=B
12 9 11 sylan FFnAxFBFx=B
13 12 adantrl FFnAxCxFBFx=B
14 8 13 jca FFnAxCxFBxACFx=B
15 14 ex FFnAxCxFBxACFx=B
16 15 eximdv FFnAxxCxFBxxACFx=B
17 16 imp FFnAxxCxFBxxACFx=B
18 df-rex xACFx=BxxACFx=B
19 17 18 sylibr FFnAxxCxFBxACFx=B
20 4 19 sylan2 FFnABFCxACFx=B