Metamath Proof Explorer


Theorem fvmptdf

Description: Deduction version of fvmptd using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024)

Ref Expression
Hypotheses fvmptd.1 φ F = x D B
fvmptd.2 φ x = A B = C
fvmptd.3 φ A D
fvmptd.4 φ C V
fvmptdf.p x φ
fvmptdf.a _ x A
fvmptdf.c _ x C
Assertion fvmptdf φ F A = C

Proof

Step Hyp Ref Expression
1 fvmptd.1 φ F = x D B
2 fvmptd.2 φ x = A B = C
3 fvmptd.3 φ A D
4 fvmptd.4 φ C V
5 fvmptdf.p x φ
6 fvmptdf.a _ x A
7 fvmptdf.c _ x C
8 1 fveq1d φ F A = x D B A
9 nfcsb1v _ x y / x B
10 9 a1i φ _ x y / x B
11 7 a1i φ _ x C
12 csbeq1a x = y B = y / x B
13 12 adantl φ x = y B = y / x B
14 6 nfeq2 x y = A
15 5 14 nfan x φ y = A
16 7 a1i φ y = A _ x C
17 vex y V
18 17 a1i φ y = A y V
19 eqtr x = y y = A x = A
20 19 ancoms y = A x = y x = A
21 20 2 sylan2 φ y = A x = y B = C
22 21 anassrs φ y = A x = y B = C
23 15 16 18 22 csbiedf φ y = A y / x B = C
24 5 10 11 3 13 23 csbie2df φ A / x B = C
25 24 4 eqeltrd φ A / x B V
26 eqid x D B = x D B
27 26 fvmpts A D A / x B V x D B A = A / x B
28 3 25 27 syl2anc φ x D B A = A / x B
29 8 28 24 3eqtrd φ F A = C