Metamath Proof Explorer


Theorem fvmpti

Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fvmptg.1 x=AB=C
fvmptg.2 F=xDB
Assertion fvmpti ADFA=IC

Proof

Step Hyp Ref Expression
1 fvmptg.1 x=AB=C
2 fvmptg.2 F=xDB
3 1 2 fvmptg ADCVFA=C
4 fvi CVIC=C
5 4 adantl ADCVIC=C
6 3 5 eqtr4d ADCVFA=IC
7 1 eleq1d x=ABVCV
8 2 dmmpt domF=xD|BV
9 7 8 elrab2 AdomFADCV
10 9 baib ADAdomFCV
11 10 notbid AD¬AdomF¬CV
12 ndmfv ¬AdomFFA=
13 11 12 syl6bir AD¬CVFA=
14 13 imp AD¬CVFA=
15 fvprc ¬CVIC=
16 15 adantl AD¬CVIC=
17 14 16 eqtr4d AD¬CVFA=IC
18 6 17 pm2.61dan ADFA=IC